|    |                                    | MATHS - YEAR 11                                                                                                                                                                                                               |                                                                                                                                                        | RAG |
|----|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | Whole year:                        | Higher Tier                                                                                                                                                                                                                   |                                                                                                                                                        |     |
| 1. | Integer                            | A <b>whole number</b> that can be positive, negative or zero.                                                                                                                                                                 | -3, 0, 92                                                                                                                                              |     |
| 2. | Factor                             | A number that <b>divides exactly</b><br>into another number without a<br>remainder.                                                                                                                                           | The factors of 18 are:<br>1, 2, 3, 6, 9, 18<br>The factor pairs of 18 are: 1, 18                                                                       |     |
|    |                                    | It is useful to write factors in pairs.                                                                                                                                                                                       | 2, 9<br>3, 6                                                                                                                                           |     |
| 3. | Multiple                           | The result of multiplying a number by an integer.                                                                                                                                                                             | The first five multiples of 7 are:<br>7, 14, 21, 28, 35                                                                                                |     |
| 4. | Highest<br>Common<br>Factor (HCF)  | The times tables of a number.<br>The biggest number that<br>divides exactly into two or<br>more numbers.                                                                                                                      | The HCF of 6 and 9 is 3 because<br>it is the biggest number that<br>divides into 6 and 9 exactly.                                                      |     |
| 5. | Lowest<br>Common<br>Multiple (LCM) | The <b>smallest</b> number that is in<br>the <b>times tables</b> of each of<br>the numbers given.                                                                                                                             | The LCM of 3, 4 and 5 is 60<br>because it is the smallest<br>number in the 3, 4 and 5 times<br>tables.                                                 |     |
| 6. | Prime Number                       | A number that has exactly two factors: one and itself.                                                                                                                                                                        | The first ten prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29                                                                                 |     |
| 7. | Prime Factor                       | A factor which is a prime number.                                                                                                                                                                                             | The prime factors of 18 are: 2,3                                                                                                                       |     |
| 8. | Product of<br>Prime Factors        | Finding out which <b>prime</b><br><b>numbers multiply</b> together to<br>make the <b>original</b> number.<br>se a <b>prime factor tree.</b><br>Also known as 'prime<br>factorisation'.                                        | $36 = 2 \times 2 \times 3 \times 3$<br>$36 = 2 \times 2 \times 3 \times 3$<br>or $2^2 \times 3^2$<br>3<br>3<br>3                                       |     |
| 9. | Recurring                          | A decimal number that has<br>digits that repeat forever.<br>The part that repeats is<br>usually shown by placing a dot<br>above the digit that repeats,<br>or dots over the first and last<br>digit of the repeating pattern. | $\frac{1}{3} = 0.333 \dots = 0.\dot{3}$ $\frac{1}{7} = 0.142857142857 \dots$ $= 0.\dot{1}4285\dot{7}$ $\frac{77}{600} = 0.128333 \dots = 0.128\dot{3}$ |     |



|     | MATHS - YEAR 11<br>Higher Tier        |                                                                                                                               |                                                                                                                              | RAG |
|-----|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:                           |                                                                                                                               |                                                                                                                              |     |
| 10. | Rational<br>number                    | A number of the form $\frac{p}{q}$ ,<br>where $p$ and $q$ are integers<br>and $q \neq 0$ .                                    | $\frac{4}{9}$ , 6, $-\frac{1}{3}$ , $\sqrt{25}$ are examples of rational numbers.                                            |     |
| 11. | Irrational<br>number                  | A number that cannot be<br>written in the form $\frac{p}{q}$ , where $p$<br>and $q$ are integers and $q \neq 0$ .             | $\pi,\sqrt{2}$ are examples of an irrational numbers.                                                                        |     |
| 12. | Surd                                  | The <b>irrational number</b> that is<br>a <b>root of a positive integer</b> ,<br>whose value cannot be<br>determined exactly. | $\sqrt{2}$ is a surd because it is a root which cannot be determined exactly.                                                |     |
|     |                                       | Surds have infinite non-<br>recurring decimals.                                                                               | $\sqrt{2} = 1.41421356$ which never repeats.                                                                                 |     |
| 13. | Ratio                                 | Ratio compares the size of<br>one part to another part.<br>Written using the ':' symbol.                                      | 3:1                                                                                                                          |     |
| 14. | Proportion                            | Proportion compares the size<br>of <b>one part</b> to the size of the<br><b>whole</b> .<br>Usually written as a fraction.     | In a class with 13 boys and 9 girls, the proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$ |     |
| 15. | Simplifying<br>Ratios                 | <b>Divide</b> all parts of the ratio by a <b>common factor</b> .                                                              | 5 : 10 = 1 : 2 (divide both by 5)<br>14 : 21 = 2 : 3 (divide both by 7)                                                      |     |
| 16. | Ratios in the form $1 : n$ or $n : 1$ | <b>Divide</b> both parts of the ratio<br>by one of the numbers to<br>make <b>one part equal 1</b> .                           | 5: 7 = 1: $\frac{7}{5}$ in the form 1 : n<br>5: 7 = $\frac{5}{7}$ : 1 in the form n : 1                                      |     |
| 17. | Sharing in a<br>Ratio                 | <b>1. Add</b> the total parts of the ratio.                                                                                   | Share £60 in the ratio 3 : 2 : 1.                                                                                            |     |
|     |                                       | <b>2. Divide</b> the amount to be shared by this value to find the value of one part.                                         | 3 + 2 + 1 = 6<br>60 ÷ 6 = 10                                                                                                 |     |
|     |                                       | <b>3. Multiply</b> this value by each part of the ratio.                                                                      | 3 x 10 = 30, 2 x 10 = 20, 1 x 10 =<br>10                                                                                     |     |
|     |                                       | Use only if you <b>know the</b><br>total.                                                                                     | £30 : £20 : £10                                                                                                              |     |



|     |                           | MATHS - YEAR 11<br>Higher Tier                                                                                                                 |                                                                                                                                                                           | RAG |
|-----|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:               |                                                                                                                                                |                                                                                                                                                                           |     |
| 18. | Proportional<br>Reasoning | Comparing two things using<br>multiplicative reasoning and<br>applying this to a new<br>situation.                                             | 7 bunches of flowers contain 42 flowers.How many flowers are in 1 bunch?+7+77 bunches42 flowers1 bunch1 bunch6 flowers                                                    |     |
|     |                           | Identify one multiplicative link<br>and use this to find missing<br>quantities.                                                                |                                                                                                                                                                           |     |
| 19. | Unitary Method            | Finding the <b>value of a single</b><br><b>unit</b> and then finding the<br>necessary value by<br><b>multiplying</b> the single unit<br>value. | 3 cakes require 450g of sugar to<br>make. Find how much sugar is<br>needed to make 5 cakes.<br>3 cakes = 450g<br>So 1 cake = 150g (÷ by 3)<br>So 5 cakes = 750 g (x by 5) |     |
|     |                           |                                                                                                                                                |                                                                                                                                                                           |     |
| 20. | Ratio already<br>shared   | Find what <b>one part</b> of the ratio is worth using the <b>unitary method</b> .                                                              | Money was shared in the ratio<br>3:2:5 between Ann, Bob and Cat.<br>Given that Bob had £16, found<br>out the total amount of money<br>shared.                             |     |
|     |                           |                                                                                                                                                | £16 = 2 parts                                                                                                                                                             |     |
|     |                           |                                                                                                                                                | So £8 = 1 part                                                                                                                                                            |     |
|     |                           |                                                                                                                                                | 3 + 2 + 5 = 10 parts, so 8 x<br>10 = £80                                                                                                                                  |     |
| 21. | Best Buys                 | Find the <b>unit cost</b> by <b>dividing</b> the <b>price by the quantity</b> .                                                                | 8 cakes for £1.28 → 16p each<br>(÷by 8)                                                                                                                                   |     |
|     |                           | The <b>lowest</b> number is the best value.                                                                                                    | 13 cakes for £2.05 → 15.8p each<br>(÷by 13)                                                                                                                               |     |
|     |                           |                                                                                                                                                | Pack of 13 cakes is best value.                                                                                                                                           |     |
| 22. | Percentage<br>Change      | DifferenceOriginal                                                                                                                             | A games console is bought for<br>£200 and sold for £250.<br>% change = $\frac{50}{200} \times 100 = 25\%$                                                                 |     |



| MATHS - YEAR 11<br>Higher Tier |                             |                                                                           |                                                 | RAG |
|--------------------------------|-----------------------------|---------------------------------------------------------------------------|-------------------------------------------------|-----|
|                                | Whole year:                 |                                                                           |                                                 |     |
| 23.                            | Fractions to                | Divide the numerator by the                                               | 3                                               |     |
|                                | Decimals                    | denominator using the bus                                                 | $\frac{3}{8} = 3 \div 8 = 0.375$                |     |
|                                |                             | stop method.                                                              |                                                 |     |
| 24.                            | Decimals to                 | Write as a fraction over 10,                                              | $0.36 = \frac{36}{100} = \frac{9}{25}$          |     |
|                                | Fractions                   | 100 or 1000 and simplify.                                                 |                                                 |     |
| 25.                            | Percentages to<br>Decimals  | Divide by 100.                                                            | $8\% = 8 \div 100 = 0.08$                       |     |
| 26.                            | Decimals to<br>Percentages  | Multiply by 100.                                                          | $0.4 = 0.4 \times 100\% = 40\%$                 |     |
| 27.                            | Fractions to                | Percentage is just a fraction                                             | 3 12                                            |     |
|                                | Percentages                 | out of 100. Make the                                                      | $\frac{3}{25} = \frac{12}{100} = 12\%$          |     |
|                                | -                           | denominator 100 using                                                     |                                                 |     |
|                                |                             | equivalent fractions.                                                     | $\frac{9}{17} \times 100 = 52.9\%$              |     |
|                                |                             | When the denominator                                                      |                                                 |     |
|                                |                             | doesn't go in to 100, use a                                               |                                                 |     |
|                                |                             | calculator and multiply the                                               |                                                 |     |
| 2.2                            | <u> </u>                    | fraction by 100.                                                          | 14 7                                            |     |
| 28.                            | Percentages to<br>Fractions | Percentage is just a fraction                                             | $14\% = \frac{14}{100} = \frac{7}{50}$          |     |
|                                | FIACTIONS                   | out of 100.                                                               | 100 50                                          |     |
|                                |                             | Write the percentage over 100 and simplify.                               |                                                 |     |
| 29.                            | Increase or                 | Non-calculator: Find the                                                  | Increase 500 by 20% (Non Calc):                 |     |
|                                | Decrease by a               | percentage and add or                                                     | 10% of 500 = 50                                 |     |
|                                | Percentage                  | subtract it from the original                                             |                                                 |     |
|                                |                             | amount.                                                                   | so 20% of 500 = 100                             |     |
|                                |                             |                                                                           | 500 + 100 = 600                                 |     |
|                                |                             | Calculator: Find the percentage multiplier and                            | Decrease 800 by 17% (Calc):                     |     |
|                                |                             | multiply.                                                                 | 100%-17%=83%                                    |     |
|                                |                             |                                                                           | 83% ÷ 100 = 0.83                                |     |
|                                |                             |                                                                           | 0.83 x 800 = 664                                |     |
| 30.                            | Percentage<br>Multiplier    | The <b>number</b> you <b>multiply</b> a quantity by to <b>increase or</b> | The multiplier for increasing by 12% is 1.12    |     |
|                                |                             | decrease it by a percentage.                                              | The multiplier for decreasing by 12% is 0.88    |     |
|                                |                             |                                                                           | The multiplier for increasing by 100% is 2.     |     |
| 31.                            | Reverse                     | Find the correct percentage                                               | A jumper was priced at £48.60                   |     |
|                                | Percentage                  | <b>given in the question</b> , then work backwards to <b>find 100%.</b>   | after a 10% reduction. Find its original price. |     |
|                                |                             | Look out for words like                                                   | 100% - 10% = 90%, 90% = £48.60                  |     |
|                                |                             | 'before' or 'original'.                                                   | 1% = £0.54 100% = £54                           |     |





|     |                       | MATHS - YEAR 11<br>Higher Tier                                                                                                                                     |                                                                                                                                                                                       | RAG |
|-----|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:           |                                                                                                                                                                    |                                                                                                                                                                                       |     |
| 32. | Simple Interest       | Interest calculated as a <b>percentage of the original</b> amount.                                                                                                 | £1000 invested for 3 years at 10% simple interest.                                                                                                                                    |     |
|     |                       |                                                                                                                                                                    | $10\% \text{ of } \pounds 1000 = \pounds 100$                                                                                                                                         |     |
| 33. | Exponential<br>Growth | When we <b>multiply</b> a number<br>repeatedly by the same<br>number ( $\neq$ 1), resulting in the<br>number increasing by the<br>same proportion each time.       | Interest = $3 \times \pounds 100 = \pounds 300$<br>1, 2, 4, 8, 16, 32, 64, 128 is an<br>example of exponential growth,<br>because the numbers are being<br>multiplied by 2 each time. |     |
|     |                       | The original amount can grow very quickly in exponential growth.                                                                                                   |                                                                                                                                                                                       |     |
| 34. | Exponential<br>Decay  | When we <b>multiply</b> a number<br>repeatedly by the same<br>number $(0 < x < 1)$ , resulting<br>in the number decreasing by<br>the same proportion each<br>time. | 1000, 200, 40, 8 is an example<br>of exponential decay, because<br>the numbers are being multiplied<br>by $\frac{1}{5}$ each time.                                                    |     |
|     |                       | The original amount can<br>decrease very quickly in<br>exponential decay.                                                                                          |                                                                                                                                                                                       |     |
| 35. | Compound<br>Interest  | Interest paid on the original<br>amount and the accumulated<br>interest.                                                                                           | A bank pays 5% compound<br>interest a year. Bob invests<br>£3000. How much will he have<br>after 7 years.                                                                             |     |
|     |                       |                                                                                                                                                                    | $3000 \times 1.05^7 = \pounds 4221.30$                                                                                                                                                |     |
| 36. | Fraction              | A mathematical expression<br>representing the <b>division</b> of<br>one integer by another.                                                                        | $\frac{2}{7}$ is a 'proper' fraction.                                                                                                                                                 |     |
|     |                       | Fractions are written as <b>two</b><br>numbers separated by a<br>horizontal line.                                                                                  | $\frac{9}{4}$ is an 'improper' or 'top-heavy' fraction.                                                                                                                               |     |
| 37. | Numerator             | The <b>top</b> number of a fraction.                                                                                                                               | In the fraction $\frac{3}{5}$ , 3 is the numerator.                                                                                                                                   |     |



|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                                                                                                                    |                                                                                                                                                                |  |
|-----|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | Whole year:                    |                                                                                                                                                                                                                    |                                                                                                                                                                |  |
| 38. | Denominator                    | The <b>bottom</b> number of a fraction.                                                                                                                                                                            | In the fraction $\frac{3}{5}$ , 5 is the denominator.                                                                                                          |  |
| 39. | Unit Fraction                  | A fraction where the <b>numerator is one</b> and the denominator is a positive integer.                                                                                                                            | $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ etc. are examples of unit fractions.                                                                                   |  |
| 40. | Reciprocal                     | The reciprocal of a number is<br>1 divided by the number.<br>The reciprocal of $x$ is $\frac{1}{x}$<br>When we multiply a number<br>by its reciprocal we get 1.<br>This is called the<br>'multiplicative inverse'. | The reciprocal of 5 is $\frac{1}{5}$<br>The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$ , because<br>$\frac{2}{3} \times \frac{3}{2} = 1$                     |  |
| 41. | Mixed Number                   | A number formed of both an <b>integer part</b> and a <b>fraction part</b> .                                                                                                                                        | $3\frac{2}{5}$ is an example of a mixed number.                                                                                                                |  |
| 42. | Simplifying<br>Fractions       | Divide the numerator and denominator by the highest common factor.                                                                                                                                                 | $\frac{20}{45} = \frac{4}{9}$                                                                                                                                  |  |
| 43. | Equivalent<br>Fractions        | Fractions which represent the same value.                                                                                                                                                                          | $\frac{2}{5} = \frac{4}{10} = \frac{20}{50} = \frac{60}{150} \text{ etc.}$                                                                                     |  |
| 44. | Comparing<br>Fractions         | To compare fractions, they<br>each need to be rewritten so<br>that they have a <b>common</b><br><b>denominator</b> .<br><b>Ascending</b> means <b>smallest to</b>                                                  | Put in to ascending order :<br>$\frac{3}{4}, \frac{2}{3}, \frac{5}{6}, \frac{1}{2}$ .<br>Equivalent: $\frac{9}{12}, \frac{8}{12}, \frac{10}{12}, \frac{6}{12}$ |  |
|     |                                | biggest.<br>Descending means biggest to<br>smallest.                                                                                                                                                               | Correct order: $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}$                                                                                            |  |
| 45. | Fraction of an<br>Amount       | <b>Divide</b> by the <b>bottom</b> , <b>times</b><br>by the <b>top</b> .                                                                                                                                           | Find $\frac{2}{5}$ of £60<br>60 ÷ 5 = 12<br>12 × 2 = 24                                                                                                        |  |



|     |                                                      | MATHS - YEAR 11<br>Higher Tier                                                                                                                                                                                                                         |                                                                                                                                                                                              | RAG |
|-----|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 46. | Whole year:<br>Adding or<br>Subtracting<br>Fractions | Find the LCM of the<br>denominators to find a<br>common denominator.<br>Use equivalent fractions to<br>change each fraction to the<br>common denominator.<br>Then just add or subtract the<br>numerators and keep the<br>denominator the same.         | $\frac{2}{3} + \frac{4}{5}$ Multiples of 3: 3, 6, 9, 12, <b>15</b><br>Multiples of 5: 5, 10, <b>15</b><br>LCM of 3 and 5 = 15<br>$\frac{2}{3} = \frac{10}{15}$ $\frac{4}{5} = \frac{12}{15}$ |     |
|     |                                                      |                                                                                                                                                                                                                                                        | $\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$                                                                                                                              |     |
| 47. | Multiplying<br>Fractions                             | Multiply the numerators<br>together and multiply the<br>denominators together.                                                                                                                                                                         | $\frac{3}{8} \times \frac{2}{9} = \frac{6}{72} = \frac{1}{12}$                                                                                                                               |     |
| 48. | Dividing<br>Fractions                                | <ul> <li>'Keep it, Flip it, Change it -<br/>KFC'</li> <li>Keep the first fraction the<br/>same.</li> <li>Flip the second fraction<br/>upside down.</li> </ul>                                                                                          | $\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$                                                                                               |     |
|     |                                                      | Change the divide to a<br>multiply.<br>Multiply by the reciprocal of                                                                                                                                                                                   |                                                                                                                                                                                              |     |
| 49. | Rounding                                             | the second fraction.<br>To make a number simpler but<br>keep its value close to what it<br>was.<br>If the <b>digit to the right</b> of the<br>rounding digit is <b>less than 5</b> ,<br><b>round down</b> .<br>If the <b>digit to the right</b> of the | 74 rounded to the nearest ten is<br>70, because 74 is closer to 70<br>than 80.<br>152,879 rounded to the nearest<br>thousand is 153,000.                                                     |     |
|     |                                                      | rounding digit is 5 or more,<br>round up.                                                                                                                                                                                                              |                                                                                                                                                                                              |     |



|     |                       | MATHS - YEAR 11<br>Higher Tier                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | RAG |
|-----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                           |     |
| 50. | Decimal Place         | The <b>position</b> of a digit to the <b>right of a decimal point</b> .                                                                                                                                                                                                                                        | In the number 0.372, the 7 is in<br>the second decimal place.<br>0.372 rounded to two decimal<br>places is 0.37, because the 2<br>tells us to round down.<br>Careful with money - don't write<br>£27.4, instead write £27.40                                                                                                                                              |     |
| 51. | Significant<br>Figure | The significant figures of a<br>number are the digits which<br><b>carry meaning</b> (ie. are<br>significant) to the size of the<br>number.<br>The <b>first significant figure</b> of<br>a number <b>cannot be zero</b> .<br>In a number with a decimal,<br>trailing zeros are not<br>significant.              | <ul> <li>In the number 0.00821, the first significant figure is the 8.</li> <li>In the number 2.740, the 0 is not a significant figure.</li> <li>0.00821 rounded to 2 significant figures is 0.0082.</li> <li>19357 rounded to 3 significant figures is 19400. We need to include the two zeros at the end to keep the digits in the same place value columns.</li> </ul> |     |
| 52. | Truncation            | A method of approximating a<br>decimal number by <b>dropping</b><br><b>all decimal places</b> past a<br>certain point <b>without</b><br><b>rounding</b> .                                                                                                                                                      | 3.14159265 can be truncated to<br>3.1415 (note that if it had been<br>rounded, it would become<br>3.1416).                                                                                                                                                                                                                                                                |     |
| 53. | Error Interval        | A range of values that a<br>number could have taken<br>before being rounded or<br>truncated.<br>An error interval is written<br>using inequalities, with a<br>lower bound and an upper<br>bound.<br>Note that the lower bound<br>inequality can be 'equal to',<br>but the upper bound cannot<br>be 'equal to'. | 0.6 has been rounded to 1<br>decimal place.<br>The error interval is:<br>$0.55 \le x < 0.65$<br>The lower bound is 0.55<br>The upper bound is 0.65                                                                                                                                                                                                                        |     |



|     |                 | MATHS - YEAR 11<br>Higher Tier                                |                                                                     | RAG |
|-----|-----------------|---------------------------------------------------------------|---------------------------------------------------------------------|-----|
|     | Whole year:     |                                                               |                                                                     |     |
| 54. | Estimate        | To find something close to                                    | An estimate for the height of a                                     |     |
|     |                 | the correct answer.                                           | man is 1.8 metres.                                                  |     |
| 55. | Approximation   | When using approximations to                                  | 348 + 692  300 + 700                                                |     |
|     | ••              | estimate the solution to a                                    | $\frac{0.526}{0.526} \approx 0.00000000000000000000000000000000000$ |     |
|     |                 | calculation, round each                                       |                                                                     |     |
|     |                 | number in the calculation to                                  |                                                                     |     |
|     |                 | 1 significant figure.                                         | 'Note that dividing by 0.5 is the                                   |     |
|     |                 | $\approx$ means 'approximately equal                          | same as multiplying by 2'                                           |     |
|     |                 | to'                                                           |                                                                     |     |
| 56. | Direct          | If two quantities are in direct                               |                                                                     |     |
|     | Proportion      | proportion, <b>as one increases</b> ,                         |                                                                     |     |
|     |                 | the <b>other increases</b> by the                             | $\sqrt{v} = kx$                                                     |     |
|     |                 | same percentage.                                              | , , , , , , , , , , , , , , , , , , ,                               |     |
|     |                 | If $y$ is directly proportional to                            |                                                                     |     |
|     |                 | x, this can be written as $y \propto$                         | x                                                                   |     |
|     |                 | x                                                             |                                                                     |     |
|     |                 |                                                               | · ↓                                                                 |     |
|     |                 | An equation of the form $y =$                                 |                                                                     |     |
|     |                 | <i>kx</i> represents direct proportion, where <i>k</i> is the |                                                                     |     |
|     |                 | constant of proportionality.                                  |                                                                     |     |
| 57. | Inverse         | If two quantities are inversely                               |                                                                     |     |
|     | Proportion      | proportional, the product of                                  |                                                                     |     |
|     |                 | the two quantities always                                     | <sup>y</sup>                                                        |     |
|     |                 | remains constant, this means                                  | $y = \frac{\kappa}{x}$                                              |     |
|     |                 | if <b>one quantity doubles</b> then                           | *                                                                   |     |
|     |                 | the other <b>quantity will halve</b> .                        | x                                                                   |     |
|     |                 | If $y$ is inversely proportional                              |                                                                     |     |
|     |                 | to $x$ , this can be written as                               | Ļ                                                                   |     |
|     |                 | $y \propto \frac{1}{2}$                                       |                                                                     |     |
|     |                 | $y \propto \frac{1}{x}$                                       |                                                                     |     |
|     |                 | An equation of the form $y = \frac{k}{x}$                     |                                                                     |     |
|     |                 | represents inverse proportion.                                |                                                                     |     |
| 58. | Using           | <b>Direct:</b> y = kx or y < x                                | p is directly proportional to q.                                    |     |
|     | proportionality |                                                               |                                                                     |     |
|     | formulae        | Inverse: $y = \frac{k}{x}$ or $y \propto \frac{1}{x}$         | When p = 12, q = 4.                                                 |     |
|     |                 | 1. Solve to find k using the                                  | Find p when $q = 20$ .                                              |     |
|     |                 | pair of values in the question.                               | 1. p = kq                                                           |     |
|     |                 | 2. Rewrite the equation using                                 | 12 = k x 4                                                          |     |
|     |                 | the k you have just found.                                    | so k = 3                                                            |     |
|     |                 | 3. Substitute the other given                                 | 2. p = 3q                                                           |     |
|     |                 | value from the question in to                                 |                                                                     |     |
|     |                 | the equation to <b>find the</b><br>missing value.             | 3. p = 3 x 20 = 60, so p = 60                                       |     |
|     |                 | ווויזאווא אמוער.                                              |                                                                     |     |



|     | MATHS - YEAR 11<br>Higher Tier       |                                                                                                                                                                                                       |                                                                                                 |  |
|-----|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
|     | Whole year:                          |                                                                                                                                                                                                       |                                                                                                 |  |
| 59. | Direct<br>Proportion<br>with powers  | Graphs showing <b>direct</b><br><b>proportion</b> can be written in<br>the form $y = kx^n$<br>Direct proportion graphs will<br>always start at the origin.                                            | Direct Proportion Graphs                                                                        |  |
| 60. | Inverse<br>Proportion<br>with powers | Graphs showing inverse<br>proportion can be written in<br>the form $y = \frac{k}{x^n}$ .<br>Inverse proportion graphs will<br>never start at the origin.                                              | Inverse Proportion Graphs<br>$y = \frac{2}{x^2}$<br>$y = \frac{3}{x^2}$<br>$y = \frac{35}{x^2}$ |  |
| 61. | Square Number                        | The number you get when you<br>multiply a number by itself.<br>Technically these are called<br>'perfect square numbers' if<br>you go on to study Maths post-<br>16 you will learn more about<br>this. | 1, 4, 9, 16, 25, 36, 49, 64, 81,<br>100, 121, 144, 169, 196, 225<br>$9^2 = 9 \times 9 = 81$     |  |
| 62. | Square Root                          | The number you multiply by<br>itself to get another number.<br>The reverse process of<br>squaring a number.                                                                                           | $\sqrt{36} = 6$<br>because $6 \times 6 = 36$                                                    |  |
| 63. | Solutions to $x^2 = \dots$           | <b>Equations</b> involving squares<br>have <b>two solutions</b> , one<br><b>positive</b> and one <b>negative</b> .                                                                                    | Solve $x^2 = 25$<br>x = 5  or  x = -5<br>This can also be written as $x = \pm 5$                |  |
| 64. | Cube Number                          | The number you get when you<br>multiply a number by itself<br>and itself again.                                                                                                                       | 1, 8, 27, 64, 125<br>$2^3 = 2 \times 2 \times 2 = 8$                                            |  |



|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                            |                                                                                          |  |  |
|-----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
|     | Whole year:                    |                                                                                                                            |                                                                                          |  |  |
| 65. | Cube Root                      | The number you multiply by itself and itself again to get another number.                                                  | $\sqrt[3]{125} = 5$<br>because $5 \times 5 \times 5 = 125$                               |  |  |
|     |                                | The reverse process of cubing a number.                                                                                    |                                                                                          |  |  |
| 66. | Powers of                      | The powers of a number are<br>that <b>number raised to</b><br><b>various powers</b> .                                      | The powers of 3 are:<br>$3^{1} = 3$<br>$3^{2} = 9$<br>$3^{3} = 27$<br>$3^{4} = 81$ etc.  |  |  |
| 67. | Multiplication<br>Index Law    | When <b>multiplying</b> with the<br>same base (number or letter),<br><b>add the powers</b> .<br>$a^m \times a^n = a^{m+n}$ | $7^5 \times 7^3 = 7^8$ $a^{12} \times a = a^{13}$ $4x^5 \times 2x^8 = 8x^{13}$           |  |  |
| 68. | Division Index<br>Law          | When <b>dividing</b> with the same<br>base (number or letter),<br><b>subtract the powers</b> .<br>$a^m \div a^n = a^{m-n}$ | $15^{7} \div 15^{4} = 15^{3}$ $x^{9} \div x^{2} = x^{7}$ $20a^{11} \div 5a^{3} = 4a^{8}$ |  |  |
| 69. | Brackets Index<br>Laws         | When raising a power to<br>another power, multiply the<br>powers together.<br>$(a^m)^n = a^{mn}$                           | $(y^2)^5 = y^{10}$ $(6^3)^4 = 6^{12}$ $(5x^6)^3 = 125x^{18}$                             |  |  |
| 70. | Notable Powers                 | $p = p^1$<br>$p^0 = 1$<br>$0^p = 0$ , when $p \neq 0$                                                                      | $99999^0 = 1$                                                                            |  |  |
| 71. | Negative<br>Powers             | A negative power performs<br>the reciprocal.<br>$a^{-m} = \frac{1}{a^m}$                                                   | $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$                                                   |  |  |



|     | MATHS - YEAR 11<br>Higher Tier<br>Whole year: |                                                                                                                               |                                                                                                                                           |  |  |
|-----|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 70  | Whole year:                                   |                                                                                                                               | 2 2                                                                                                                                       |  |  |
| 72. | Fractional<br>Powers                          | The denominator of a fractional power acts as a 'root'.                                                                       | $27^{\frac{2}{3}} = \left(\sqrt[3]{27}\right)^2 = 3^2 = 9$                                                                                |  |  |
|     |                                               | The numerator of a fractional power acts as a normal power. $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^{m}$                  | $\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^{3} = \left(\frac{5}{4}\right)^{3} = \frac{125}{64}$ |  |  |
| 73. | Surd                                          | The <b>irrational number</b> that is<br>a <b>root of a positive integer</b> ,<br>whose value cannot be<br>determined exactly. | $\sqrt{2}$ is a surd because it is a root<br>which cannot be determined<br>exactly.                                                       |  |  |
|     |                                               | Surds have <b>infinite non-</b><br>recurring decimals.                                                                        | $\sqrt{2} = 1.41421356 \dots$ which never repeats.                                                                                        |  |  |
| 74. | Rules of Surds                                | $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$                                                                                        | $\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$                                                                                       |  |  |
|     |                                               | $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$                                                                              | $\sqrt{\frac{25}{36}} = \frac{\sqrt{25}}{\sqrt{36}} = \frac{5}{6}$                                                                        |  |  |
|     |                                               | $a\sqrt{c}\pm b\sqrt{c}=(a\pm b)\sqrt{c}$                                                                                     | $2\sqrt{5} + 7\sqrt{5} = 9\sqrt{5}$                                                                                                       |  |  |
|     |                                               | $\sqrt{a} 	imes \sqrt{a} = a$                                                                                                 | $\sqrt{7} \times \sqrt{7} = 7$                                                                                                            |  |  |
|     |                                               |                                                                                                                               |                                                                                                                                           |  |  |
|     |                                               |                                                                                                                               |                                                                                                                                           |  |  |
|     |                                               |                                                                                                                               |                                                                                                                                           |  |  |
|     |                                               |                                                                                                                               |                                                                                                                                           |  |  |



|     | MATHS - YEAR 11<br>Higher Tier                    |                                                                                                                           |                                                                                                                                                 | RAG |
|-----|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:                                       |                                                                                                                           |                                                                                                                                                 |     |
| 75. | Rationalise a<br>Denominator                      | The process of rewriting a fraction so that the <b>denominator contains only rational numbers</b> .                       | $\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}$                                    |     |
|     |                                                   |                                                                                                                           | $\frac{6}{3+\sqrt{7}} = \frac{6(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})}$ $= \frac{18-6\sqrt{7}}{9-7}$ $= \frac{18-6\sqrt{7}}{2}$ $= 9-3\sqrt{7}$ |     |
| 76. | Standard Form                                     | $A \times 10^{b}$                                                                                                         | <b>8400 = 8.4</b> x 10 <sup>3</sup>                                                                                                             |     |
|     |                                                   | where $1 \le A < 10$ ,<br>b = integer                                                                                     | $0.00036 = 3.6 \times 10^{-4}$                                                                                                                  |     |
| 77. | Multiplying or<br>Dividing with<br>Standard Form  | Multiply: Multiply the numbers and add the powers.                                                                        | $(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$ $(4.5 \times 10^5) \div (3 \times 10^2)$                                           |     |
|     |                                                   | Divide: Divide the numbers<br>and subtract the powers.                                                                    | $= 1.5 \times 10^3$                                                                                                                             |     |
| 78. | Adding or<br>Subtracting<br>with Standard<br>Form | <b>Convert</b> in to <b>ordinary</b><br>numbers, <b>calculate</b> and then<br><b>convert back</b> in to standard<br>form. | $2.7 \times 10^{4} + 4.6 \times 10^{3}$ $= 27000 + 4600 = 31600$ $= 3.16 \times 10^{4}$                                                         |     |
| 79. | Expression                                        | A mathematical statement<br>written using symbols,<br>numbers or letters.                                                 | $3x + 2$ or $5y^2$                                                                                                                              |     |
| 80. | Equation                                          | A statement showing that two expressions are equal.                                                                       | 2y - 17 = 15                                                                                                                                    |     |
| 81. | Identity                                          | An equation that is true for all values of the variables.<br>An identity uses the symbol: ≡                               | $2x \equiv x + x$                                                                                                                               |     |
| 82. | Formula                                           | Shows the relationship<br>between two or more<br>variables.                                                               | Area of a rectangle = length x<br>width or A= LxW                                                                                               |     |
| 83. | Expand                                            | To expand a bracket, multiply<br>each term in the bracket by<br>the expression outside the<br>bracket.                    | 3(x+7) = 3x + 21                                                                                                                                |     |



|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                                                                        |                                                                                                                                                                                                                     | RAG |
|-----|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:                    |                                                                                                                                                                        |                                                                                                                                                                                                                     |     |
| 84. | Factorise                      | The reverse of expanding.<br>Factorising is writing an<br>expression as a product of<br>terms by 'taking out' a<br>common factor.                                      | 6x - 15 = 3(2x - 5), where 3 is the common factor.                                                                                                                                                                  |     |
| 85. | Solve a linear<br>equation     | To find the answer/value of<br>something.<br>Use inverse operations on both<br>sides of the equation<br>(balancing method) until you<br>find the value for the letter. | Solve $2x - 3 = 7$<br>Add 3 on both sides<br>2x = 10<br>Divide by 2 on both sides<br>x = 5                                                                                                                          |     |
| 86. | Inverse                        | Opposite                                                                                                                                                               | The inverse of addition is<br>subtraction.<br>The inverse of multiplication is<br>division.<br>The inverse of cubing is cube<br>rooting.<br>The inverse of sine is sine <sup>-1</sup> .                             |     |
| 87. | Substitution                   | Replace letters with numbers.<br>Be careful of $5x^2$ . You need to square first, then multiply by 5.                                                                  | a = 3, b = 2  and  c = 5.<br>Find:<br>1. $2a = 2 \times 3 = 6$<br>2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$<br>3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$                                                               |     |
| 88. | Rearranging<br>Formulae        | Use inverse operations on both<br>sides of the formula<br>(balancing method) until you<br>find the expression for the<br>letter.                                       | Make x the subject of $y = \frac{2x-1}{z}$<br>Multiply both sides by z<br>yz = 2x - 1<br>Add 1 to both sides<br>yz + 1 = 2x<br>Divide by 2 on both sides<br>$\frac{yz + 1}{2} = x$<br>We now have x as the subject. |     |



|     |                      | MATHS - YEAR 11<br>Higher Tier                                                                                                                                                                                                     |                                                                                                                                                                                          | RAG |
|-----|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:          |                                                                                                                                                                                                                                    |                                                                                                                                                                                          |     |
| 89. | Writing<br>Formulae  | Substitute letters for words in the question.                                                                                                                                                                                      | Bob charges £3 per window and a £5 call out charge.                                                                                                                                      |     |
|     |                      |                                                                                                                                                                                                                                    | C = 3N + 5<br>Where N=number of windows and                                                                                                                                              |     |
|     |                      |                                                                                                                                                                                                                                    | C=cost.                                                                                                                                                                                  |     |
| 90. | Machine              | Takes an input value,<br>performs some operations and<br>produces an output value.                                                                                                                                                 |                                                                                                                                                                                          |     |
| 91. | Function             | A relationship between two sets of values.                                                                                                                                                                                         | $f(x) = 3x^2 - 5$<br>'For any input value, square the term, then multiply by 3, then subtract 5'.                                                                                        |     |
| 92. | Function<br>notation | f(x)<br>x is the input value<br>f(x) is the output value.                                                                                                                                                                          | f(x) = 3x + 11<br>Suppose the input value is $x = 5$<br>The output value is $f(5) = 3 \times 5 + 11 = 26$                                                                                |     |
| 93. | Inverse<br>function  | $f^{-1}(x)$<br>A function that performs the opposite process of the original function.<br>1. Write the function as $y = f(x)$<br>2. Rearrange to make $x$ the subject.<br>3. Replace the $y$ with $x$ and the $x$ with $f^{-1}(x)$ | $f(x) = (1 - 2x)^{5}$ . Find the<br>inverse.<br>$y = (1 - 2x)^{5}$ $\sqrt[5]{y} = 1 - 2x$ $1 - \sqrt[5]{y} = 2x$ $\frac{1 - \sqrt[5]{y}}{2} = x$ $f^{-1}(x) = \frac{1 - \sqrt[5]{x}}{2}$ |     |



|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                                                                                    |                                                                                                                                                                       |  |  |
|-----|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     | Whole year:                    |                                                                                                                                                                                    |                                                                                                                                                                       |  |  |
| 94. | Composite<br>function          | A combination of two or more<br>functions to create a new<br>function.                                                                                                             | $f(x) = 5x - 3, g(x) = \frac{1}{2}x + 1$<br>What is $fg(4)$ ?                                                                                                         |  |  |
|     |                                | fg(x) is the composite<br>function that substitutes the<br>function $g(x)$ into the<br>function $f(x)$ .<br>fg(x) means 'do g first, then<br>f'                                    | $g(4) = \frac{1}{2} \times 4 + 1 = 3$<br>$f(3) = 5 \times 3 - 3 = 12 = fg(4)$<br>What is $fg(x)$ ?<br>$fg(x) = 5\left(\frac{1}{2}x + 1\right) - 3 = \frac{5}{2}x + 2$ |  |  |
|     |                                | gf(x) means 'do f first, then g'                                                                                                                                                   |                                                                                                                                                                       |  |  |
| 95. | Iteration                      | The act of repeating a process<br>over and over again, often<br>with the aim of approximating<br>a desired result more closely.<br>Recursive Notation: $x_{n+1} = \sqrt{3x_n + 6}$ | $x_{1} = 4$ $x_{2} = \sqrt{3 \times 4 + 6} = 4.242640 \dots$ $x_{3} = \sqrt{3 \times 4.242640 \dots + 6}$ $= 4.357576 \dots$                                          |  |  |
| 96. | Iterative<br>Method            | To create an iterative<br>formula, rearrange an<br>equation with more than one x<br>term to make one of the x<br>terms the subject.                                                | Use an iterative formula to find<br>the positive root of $x^2 - 3x - 6 = 0$ to 3 decimal places.<br>$x_1 = 4$<br>Answer:                                              |  |  |
|     |                                | You will be given the first value to substitute in, often called $x_1$ .                                                                                                           | $x^{2} = 3x + 6$ $x = \sqrt{3x + 6}$ So $x_{n+1} = \sqrt{3x_{n} + 6}$                                                                                                 |  |  |
|     |                                | Keep substituting in your<br>previous answer until your<br>answers are the same to a<br>certain degree of accuracy.<br>This is called converging to a<br>limit.                    | $x_{1} = 4$ $x_{2} = \sqrt{3 \times 4 + 6} = 4.242640 \dots$ $x_{3} = \sqrt{3 \times 4.242640 \dots + 6}$ $= 4.357576 \dots$ Keep repeating                           |  |  |
|     |                                | Use the 'ANS' button on your calculator to keep substituting in the previous answer.                                                                                               | $x_7 = 4.372068 = 4.372 (3dp)$<br>$x_8 = 4.372208 = 4.372 (3dp)$<br>So answer is $x = 4.372 (3dp)$                                                                    |  |  |



|     |                                 | MATHS - YEAR 11<br>Higher Tier                                                                                                     |                                                                                                                                                                         | RAG |
|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:                     |                                                                                                                                    |                                                                                                                                                                         |     |
| 97. | Simplifying                     | Collect 'like terms'.                                                                                                              | 2x + 3y + 4x - 5y + 3                                                                                                                                                   |     |
|     | Expressions                     | Be careful with negatives.                                                                                                         | = 6x - 2y + 3                                                                                                                                                           |     |
|     |                                 | $x^2$ and x are not like terms.                                                                                                    | $3x + 4 - x^{2} + 2x - 1$<br>= 5x - x <sup>2</sup> + 3                                                                                                                  |     |
| 98. | x times x                       | The answer is $x^2$ not $2x$ .                                                                                                     | Squaring is multiplying by itself, not by 2.                                                                                                                            |     |
| 99. | $p \times p \times p$           | The answer is $p^3$ not $3p$ .                                                                                                     | If p = 2, then $p^3$ = 2x2x2=8, not 2x3 = 6                                                                                                                             |     |
| 100 | p + p + p                       | The answer is 3p not $p^3$ .                                                                                                       | If p = 2, then $2+2+2 = 6$ , not $2^3 = 8$                                                                                                                              |     |
| 101 | Quadratic                       | A quadratic expression is of the form                                                                                              | Examples of quadratic expressions:                                                                                                                                      |     |
|     |                                 |                                                                                                                                    | <i>x</i> <sup>2</sup>                                                                                                                                                   |     |
|     |                                 | $ax^2 + bx + c$                                                                                                                    | $8x^2 - 3x + 7$                                                                                                                                                         |     |
|     |                                 | where $a, b$ and $c$ are numbers,                                                                                                  | Examples of non-quadratic expressions:                                                                                                                                  |     |
|     |                                 | $a \neq 0$ .                                                                                                                       | $2x^3 - 5x^2$                                                                                                                                                           |     |
|     |                                 |                                                                                                                                    | 9x - 1                                                                                                                                                                  |     |
| 102 | Factorising<br>Quadratics       | When a quadratic expression<br>is in the form $x^2 + bx + c$ find<br>the two numbers that add to<br>give b and multiply to give c. | $x^{2} + 7x + 10 = (x + 5)(x + 2)$<br>(because 5 and 2 add to give 7<br>and multiply to give 10)<br>$x^{2} + 2x - 8 = (x + 4)(x - 2)$<br>(because +4 and -2 add to give |     |
| 103 | Difference of 2<br>Squares      | An expression of the form $a^2 - b^2$ can be factorised to give $(a + b)(a - b)$ .                                                 | +2 and multiply to give -8)<br>$x^{2} - 25 = (x + 5)(x - 5)$<br>$16x^{2} - 81 = (4x + 9)(4x - 9)$                                                                       |     |
| 104 | Expanding<br>double<br>brackets | When you expand double<br>brackets use the FOIL method<br>to make sure you don't forget<br>any of the terms!                       | First<br>Outer<br>Inner<br>Last<br>$x^2+6\chi+3\chi+18$<br>$=x^2+9\chi+18$                                                                                              |     |



|     |                                            | MATHS - YEAR 11<br>Higher Tier                                                                                                                     |                                                                                                                 | RAG |
|-----|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:                                |                                                                                                                                                    |                                                                                                                 |     |
| 105 | Solving<br>Quadratics<br>$(ax^2 = b)$      | Isolate the $x^2$ term and square<br>root both sides.<br>Remember there will be a                                                                  | $2x^2 = 98$ $x^2 = 49$                                                                                          |     |
|     |                                            | positive and a negative solution.                                                                                                                  | $x = \pm 7$                                                                                                     |     |
| 106 | Solving<br>Quadratics<br>$(ax^2 + bx = 0)$ | Factorise and then solve = 0.                                                                                                                      | $x^{2} - 3x = 0$ $x(x - 3) = 0$ $x = 0 \text{ or } x = 3$                                                       |     |
| 107 | Solving<br>Quadratics by<br>Factorising    | Factorise the quadratic in the usual way.                                                                                                          | x = 0  or  x = 3<br>Solve $x^2 + 3x - 10 = 0$                                                                   |     |
|     | Factorising $(a = 1)$                      | Solve = 0                                                                                                                                          | Factorise: $(x + 5)(x - 2) = 0$<br>x = -5  or  x = 2                                                            |     |
|     |                                            | Make sure the equation = 0<br>before factorising.                                                                                                  |                                                                                                                 |     |
| 108 | Factorising<br>Quadratics                  | When a quadratic is in the form                                                                                                                    | Factorise $6x^2 + 5x - 4$                                                                                       |     |
|     | when $a \neq 1$                            | $ax^2 + bx + c$<br>1. Multiply a by c = ac                                                                                                         | 1. $6 \times -4 = -24$                                                                                          |     |
|     |                                            | 2. Find two numbers that add to give b and multiply to give ac.                                                                                    | <ul> <li>2. Two numbers that add to give</li> <li>+5 and multiply to give -24 are</li> <li>+8 and -3</li> </ul> |     |
|     |                                            | 3. Re-write the quadratic, replacing $bx$ with the two numbers you found.                                                                          | 3. $6x^2 + 8x - 3x - 4$                                                                                         |     |
|     |                                            | 4. Factorise in pairs - you<br>should get the same bracket<br>twice                                                                                | 4. Factorise in pairs:                                                                                          |     |
|     |                                            | 5. Write your two brackets -<br>one will be the repeated<br>bracket, the other will be<br>made of the factors outside<br>each of the two brackets. | 2x(3x + 4) - 1(3x + 4)<br>5. Answer = $(3x + 4)(2x - 1)$                                                        |     |
|     |                                            |                                                                                                                                                    |                                                                                                                 |     |



|      | MATHS - YEAR 11<br>Higher Tier        |                                                                                                           |                                                            | RAG |
|------|---------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----|
|      | Whole year:                           |                                                                                                           |                                                            |     |
| 109  | Solving<br>Quadratics by              | Factorise the quadratic in the usual way.                                                                 | Solve $2x^2 + 7x - 4 = 0$                                  |     |
|      | Factorising $(a \neq 1)$              | Solve = 0<br>Make sure the equation = 0                                                                   | Factorise: $(2x - 1)(x + 4) = 0$                           |     |
| 110  | Quadratic                             | before factorising.<br>A 'U-shaped' curve called a                                                        | $x = \frac{1}{2} \text{ or } x = -4$                       |     |
|      | Graph                                 | parabola.                                                                                                 |                                                            |     |
|      |                                       | The equation is of the form<br>$y = ax^2 + bx + c$ , where $a$ , $b$<br>and $c$ are numbers, $a \neq 0$ . | -1<br>(2, -9)                                              |     |
|      |                                       | If $a < 0$ , the parabola is upside down.                                                                 |                                                            |     |
| 111  | Roots of a<br>Quadratic               | A root is a solution.                                                                                     |                                                            |     |
|      |                                       | The roots of a quadratic are the <i>x</i> -intercepts of the quadratic graph.                             |                                                            |     |
| 112  | Turning Point<br>of a Quadratic       | A turning point is the point where a quadratic turns.                                                     |                                                            |     |
|      |                                       | On a positive parabola, the turning point is called a minimum.                                            |                                                            |     |
|      |                                       | On a negative parabola, the turning point is called a maximum.                                            |                                                            |     |
| 113. | Completing the Square (when $a = 1$ ) | A quadratic in the form $x^2 + bx + c$ can be written in the<br>form $(x + p)^2 + q$                      | Complete the square of $y = x^2 - 6x + 2$                  |     |
|      |                                       | 1. Write a set of brackets with <i>x</i> in and half the value of <i>b</i> .                              | Answer:<br>$(x-3)^2 - 3^2 + 2$                             |     |
|      |                                       | 2. Square the bracket.                                                                                    | $=(x-3)^2-7$                                               |     |
|      |                                       | 3. Subtract $\left(\frac{b}{2}\right)^2$ and add <i>c</i> .                                               | The minimum value of this expression occurs when $(x - x)$ |     |
|      |                                       | 4. Simplify the expression.                                                                               | $(x^2)^2 = 0$ , which occurs when $x = 3$                  |     |
|      |                                       | This helps you find the maximum or minimum of a                                                           | When $x = 3$ , $y = 0 - 7 = -7$                            |     |
|      |                                       | quadratic graph.                                                                                          | Minimum point = $(3, -7)$                                  |     |



|     |                                | MATHS - YEAR 11<br>Higher Tier                                                                                                                     |                                                                   | RAG |
|-----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----|
|     | Whole year:                    |                                                                                                                                                    |                                                                   |     |
| 114 | Completing the<br>Square (when | A quadratic in the form $ax^2 + by$                                                                                                                | Complete the square of                                            |     |
|     | $a \neq 1$ )                   | bx + c can be written in the<br>form $p(x + q)^2 + r$ .                                                                                            | $4x^2 + 8x - 3$                                                   |     |
|     |                                | Use the same method as                                                                                                                             | Answer:                                                           |     |
|     |                                | above, but factorise out $a$ at the start.                                                                                                         | $4[x^2+2x]-3$                                                     |     |
|     |                                |                                                                                                                                                    | $= 4[(x+1)^2 - 1^2] - 3$                                          |     |
|     |                                |                                                                                                                                                    | $=4(x+1)^2-4-3$                                                   |     |
|     |                                |                                                                                                                                                    | $=4(x+1)^2-7$                                                     |     |
| 115 | Solving<br>Quadratics by       | Complete the square in the usual way and use inverse                                                                                               | Solve $x^2 + 8x + 1 = 0$                                          |     |
|     | Completing the                 | operations to solve.                                                                                                                               | Answer:                                                           |     |
|     | Square                         |                                                                                                                                                    | $(x+4)^2 - 4^2 + 1 = 0$                                           |     |
|     |                                |                                                                                                                                                    | $(x+4)^2 - 15 = 0$                                                |     |
|     |                                |                                                                                                                                                    | $(x+4)^2 = 15$                                                    |     |
|     |                                |                                                                                                                                                    | $(x+4) = \pm \sqrt{15}$                                           |     |
|     |                                |                                                                                                                                                    | $x = -4 \pm \sqrt{15}$                                            |     |
| 116 | Solving                        | A quadratic in the form $ax^2$ +                                                                                                                   | Solve $3x^2 + x - 5 = 0$                                          |     |
|     | Quadratics<br>using the        | bx + c = 0 can be solved using the formula:                                                                                                        | Answer:                                                           |     |
|     | Quadratic                      |                                                                                                                                                    | a = 3, b = 1, c = -5                                              |     |
|     | Formula                        | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$                                                                                                           | $-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}$                        |     |
|     |                                | Use the formula if the                                                                                                                             | $x = \frac{-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}}{2 \times 3}$ |     |
|     |                                | quadratic does not factorise easily.                                                                                                               | $x = \frac{-1 \pm \sqrt{61}}{6}$                                  |     |
|     |                                |                                                                                                                                                    | 6     x = 1.14  or  -1.47 (2  d. p.)                              |     |
|     |                                |                                                                                                                                                    | x = 1.1707  1.77 (2 u. p. )                                       |     |
| 117 | Coordinates                    | Written in pairs. The first<br>term is the x-coordinate<br>(movement across). The<br>second term is the y-<br>coordinate (movement up or<br>down). | A: $(4,7)$<br>B: $(-6,-3)$<br>B: $(-6,-3)$                        |     |
|     |                                |                                                                                                                                                    |                                                                   |     |



|     |                           | MATHS - YEAR 11<br>Higher Tier                                                                                                                                                                                                                                                                                             |                                                                                                    | RAG    |
|-----|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|
|     | Whole year:               |                                                                                                                                                                                                                                                                                                                            |                                                                                                    |        |
| 118 | Midpoint of a<br>Line     | Method 1: add the x<br>coordinates and divide by 2,<br>add the y coordinates and<br>divide by 2.                                                                                                                                                                                                                           | Find the midpoint between (2,1)<br>and (6,9)<br>$\frac{2+6}{2} = 4 \text{ and } \frac{1+9}{2} = 5$ |        |
|     |                           | Method 2: Sketch the line and<br>find the values half way<br>between the two x and two y<br>values.                                                                                                                                                                                                                        | So, the midpoint is (4,5)                                                                          |        |
| 119 | Linear Graph              | Straight line graph.<br>The general equation of a<br>linear graph is<br>y = mx + c<br>where $m$ is the gradient and $c$<br>is the y-intercept.<br>The equation of a linear graph<br>can contain an x-term, a y-<br>term and a number.                                                                                      | Example:<br>$\begin{array}{c}  & & & & \\  & & & & \\  & & & & \\  & & & &$                        |        |
| 120 | Plotting Linear<br>Graphs | Method 1: Table of Values<br>Construct a table of values to<br>calculate coordinates.<br>Method 2: Gradient-Intercept<br>Method (use when the<br>equation is in the form $y = mx + c$ )<br>1. Plots the y-intercept<br>2. Using the gradient, plot a<br>second point.<br>3. Draw a line through the two<br>points plotted. | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                             | 3<br>6 |



|     |                                                                         | MATHS - YEAR 11<br>Higher Tier                                                                           |                                                                             | RAG |
|-----|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----|
|     | Whole year:                                                             |                                                                                                          |                                                                             |     |
|     | Plotting Linear<br>Graphs                                               | Method 3: Cover-Up Method<br>(use when the equation is in<br>the form $ax + by = c$ )                    | 9↑<br>8<br>7<br>6                                                           |     |
|     |                                                                         | 1. Cover the $x$ term and solve the resulting equation. Plot this on the $x - axis$ .                    |                                                                             |     |
|     |                                                                         | 2. Cover the y term and solve the resulting equation. Plot this on the $y - axis$ .                      | $3 - 2 - 1 - 1 - 1 - 1 - 2 - 3 - 4 - 6 - 7 - 8 \rightarrow 1 - 1 - 2 - 3 1$ |     |
|     |                                                                         | 3. Draw a line through the two points plotted.                                                           |                                                                             |     |
| 121 | Gradient                                                                | The gradient of a line is how steep it is.                                                               | Gradient = $4/2 = 2$                                                        |     |
|     |                                                                         | Gradient =                                                                                               | Gradient = -3/1 =-3                                                         |     |
|     |                                                                         | $\frac{Change \text{ in } y}{Change \text{ in } x} = \frac{Rise}{Run}$                                   |                                                                             |     |
|     |                                                                         | The gradient can be positive<br>(sloping upwards) or negative<br>(sloping downwards)                     |                                                                             |     |
| 122 | Finding the<br>Equation of a<br>Line given a<br>point and a<br>gradient | Substitute in the gradient (m)<br>and point (x,y) in to the<br>equation $y = mx + c$ and solve<br>for c. | Find the equation of the line<br>with gradient 4 passing through<br>(2,7).  |     |
|     |                                                                         |                                                                                                          | y = mx + c                                                                  |     |
|     |                                                                         |                                                                                                          | $7 = 4 \times 2 + c$                                                        |     |
|     |                                                                         |                                                                                                          | c = -1                                                                      |     |
|     |                                                                         |                                                                                                          | y = 4x - 1                                                                  |     |
|     |                                                                         |                                                                                                          |                                                                             |     |
|     |                                                                         |                                                                                                          |                                                                             |     |
|     |                                                                         |                                                                                                          |                                                                             |     |
|     |                                                                         |                                                                                                          |                                                                             |     |





|     |                           | MATHS - YEAR 11<br>Higher Tier                                                                                        |                                                                                              | RAG |
|-----|---------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|
|     | Whole year:               |                                                                                                                       |                                                                                              |     |
| 123 | Finding the Equation of a | Use the two points to calculate the gradient. Then                                                                    | Find the equation of the line passing through (6,11) and (2,3)                               |     |
|     | Line given two<br>points  | repeat the method above<br>using the gradient and either<br>of the points.                                            | $m = \frac{11 - 3}{6 - 2} = 2$                                                               |     |
|     |                           |                                                                                                                       | y = mx + c                                                                                   |     |
|     |                           |                                                                                                                       | $11 = 2 \times 6 + c$                                                                        |     |
|     |                           |                                                                                                                       | c = -1 $y = 2x - 1$                                                                          |     |
|     |                           |                                                                                                                       | y = 2x = 1                                                                                   |     |
| 124 | Parallel Lines            | If two lines are parallel, they<br>will have the same gradient.<br>The value of m will be the<br>same for both lines. | Are the lines $y = 3x - 1$ and<br>2y - 6x + 10 = 0 parallel?                                 |     |
|     |                           |                                                                                                                       | Answer:                                                                                      |     |
|     |                           |                                                                                                                       | Rearrange the second equation<br>in to the form $y = mx + c$                                 |     |
|     |                           |                                                                                                                       | $2y - 6x + 10 = 0 \rightarrow y = 3x - 5$                                                    |     |
|     |                           |                                                                                                                       | Since the two gradients are equal (3), the lines are parallel.                               |     |
| 125 | Perpendicular<br>Lines    | If two lines are perpendicular,<br>the product of their gradients<br>will always equal -1.                            | Find the equation of the line<br>perpendicular to $y = 3x + 2$<br>which passes through (6,5) |     |
|     |                           | The gradient of one line will                                                                                         | Answer:                                                                                      |     |
|     |                           | be the negative reciprocal of the gradient of the other line.                                                         | As they are perpendicular, the gradient of the new line will be                              |     |
|     |                           | You may need to rearrange                                                                                             | $-\frac{1}{3}$ as this is the negative reciprocal of 3.                                      |     |
|     |                           | equations of lines to compare<br>gradients (they need to be in                                                        | y = mx + c                                                                                   |     |
|     |                           | the form $y = mx + c$ )                                                                                               | $5 = -\frac{1}{3} \times 6 + c$                                                              |     |
|     |                           |                                                                                                                       | c = 7                                                                                        |     |
|     |                           |                                                                                                                       | $y = -\frac{1}{3}x + 7$                                                                      |     |
|     |                           |                                                                                                                       | Or                                                                                           |     |
|     |                           |                                                                                                                       | 3x + x - 7 = 0                                                                               |     |



|     | MATHS - YEAR 11<br>Higher Tier                  |                                                                                                                                                                                                                 |                                                                                                                                                                          | RAG |
|-----|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:                                     |                                                                                                                                                                                                                 |                                                                                                                                                                          |     |
| 126 | Linear<br>Sequence                              | A number pattern with a common difference.                                                                                                                                                                      | 2, 5, 8, 11 is a linear sequence                                                                                                                                         |     |
| 127 | Term                                            | Each value in a sequence is called a term.                                                                                                                                                                      | In the sequence 2, 5, 8, 11, 8 is the third term of the sequence.                                                                                                        |     |
| 128 | Term-to-term<br>rule                            | A rule which allows you to find<br>the next term in a sequence if<br>you know the previous term.                                                                                                                | First term is 2. Term-to-term<br>rule is 'add 3'<br>Sequence is: 2, 5, 8, 11                                                                                             |     |
| 129 | nth term                                        | A rule which allows you to<br>calculate the term that is in<br>the nth position of the<br>sequence.<br>Also known as the 'position-<br>to-term' rule.<br>n refers to the position of a<br>term in a sequence.   | nth term is $3n - 1$<br>The 100th term is $3 \times 100 - 1 = 299$                                                                                                       |     |
| 130 | Finding the nth<br>term of a linear<br>sequence | <ol> <li>Find the difference.</li> <li>Multiply that by <i>n</i>.</li> <li>Substitute n = 1 to find out<br/>what number you need to add<br/>or subtract to get the first<br/>number in the sequence.</li> </ol> | Find the nth term of: 3, 7, 11,<br>15<br>1. Difference is +4<br>2. Start with $4n$<br>3. $4 \times 1 = 4$ , so we need to<br>subtract 1 to get 3.<br>nth term = $4n - 1$ |     |
| 131 | Fibonacci type<br>sequences                     | A sequence where the next<br>number is found by adding up<br>the previous two terms                                                                                                                             | The Fibonacci sequence is:<br>1,1,2,3,5,8,13,21,34<br>An example of a Fibonacci-type<br>sequence is:<br>4, 7, 11, 18, 29                                                 |     |



|     |             | MATHS - YEAR 11<br>Higher Tier    |                                    | RAG |
|-----|-------------|-----------------------------------|------------------------------------|-----|
|     | Whole year: |                                   |                                    |     |
| 132 | Geometric   | A sequence of numbers where       | An example of a geometric          |     |
|     | Sequence    | each term is found by             | sequence is:                       |     |
|     |             | multiplying the previous one      | sequence is.                       |     |
|     |             | by a number called the            | 2, 10, 50, 250                     |     |
|     |             | common ratio, r.                  | The common ratio is 5              |     |
|     |             |                                   |                                    |     |
|     |             |                                   | Another example of a geometric     |     |
|     |             |                                   | sequence is:                       |     |
|     |             |                                   | 81, -27, 9, -3, 1                  |     |
|     |             |                                   | The common ratio is $-\frac{1}{3}$ |     |
|     |             |                                   | 3                                  |     |
| 133 | Quadratic   | A sequence of numbers where       |                                    |     |
|     | Sequence    | the second difference is          |                                    |     |
|     | -           | constant.                         | 2 6 12 20 30 42                    |     |
|     |             | constant.                         | +4 +6 +8 +10 +12                   |     |
|     |             |                                   | +2 +2 +2 +2                        |     |
|     |             | A quadratic sequence will         |                                    |     |
|     |             | have a $n^2$ term.                |                                    |     |
| 134 | Triangular  | The sequence which comes          | 1 3 6 10                           |     |
|     | numbers     | from a pattern of dots that       |                                    |     |
|     |             | form a triangle.                  |                                    |     |
|     |             | Torm a changle.                   |                                    |     |
|     |             |                                   |                                    |     |
|     |             | 1, 3, 6, 10, 15, 21               |                                    |     |
|     |             | 1,0,0,10,10,21                    |                                    |     |
| 135 | Inequality  | An inequality says that two       | 7 ≠ 3                              |     |
|     | mequaticy   | values are not equal.             | / <del>/</del> J                   |     |
|     |             |                                   |                                    |     |
|     |             |                                   | $x \neq 0$                         |     |
|     |             | $a \neq b$ means that a is not    |                                    |     |
|     |             | equal to b.                       |                                    |     |
| 136 | Inequality  | x > 2 means x is greater than     | State the integers that satisfy    |     |
|     | symbols     | 2                                 |                                    |     |
|     |             | x < 3 means x is less than 3      | $-2 < x \le 4.$                    |     |
|     |             | u > 1 moone v is greater than     |                                    |     |
|     |             | $x \ge 1$ means x is greater than | -1, 0, 1, 2, 3, 4                  |     |
|     |             | or equal to 1                     |                                    |     |
|     |             | $x \le 6$ means x is less than or |                                    |     |
|     |             | equal to 6                        |                                    |     |
|     |             |                                   |                                    |     |
|     |             |                                   |                                    |     |



|     |                                  | MATHS - YEAR 11<br>Higher Tier                                                                                     |                                              | RAG |
|-----|----------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----|
|     | Whole year:                      |                                                                                                                    |                                              |     |
| 137 | Inequalities on<br>a Number Line | Inequalities can be shown on a number line.                                                                        | -2 -1 0 1 2 3                                |     |
|     |                                  | Open circles are used for<br>numbers that are less than or<br>greater than (< or >)                                | $x \ge 0$                                    |     |
|     |                                  | Closed circles are used for<br>numbers that are less than or<br>equal or greater than or equal<br>$(\leq or \geq)$ | -5 -4 -3 -2 -1 0 1 2 3 4 5<br>x < 2          |     |
|     |                                  |                                                                                                                    | -5 -4 -3 -2 -1 0 1 2 3 4 5<br>$-5 \le x < 4$ |     |
| 138 | Graphical                        | Inequalities can be                                                                                                | Shade the region that satisfies:             |     |
|     | Inequalities                     | represented on a coordinate grid.                                                                                  | $y > 2x, x > 1 and y \le 3$                  |     |
|     |                                  | If the inequality is strict $(x > 2)$ then use a dotted line.                                                      | y = 2x                                       |     |
|     |                                  | If the inequality is not strict $(x \le 6)$ then use a solid line.                                                 | y = 3                                        |     |
|     |                                  | Shade the region which satisfies all the inequalities.                                                             | x = 1                                        |     |
|     |                                  |                                                                                                                    |                                              |     |
|     |                                  |                                                                                                                    |                                              |     |
|     |                                  |                                                                                                                    |                                              |     |





|     |                           | MATHS - YEAR 11<br>Higher Tier                                                                                                                      |                                                                                                     | RAG |
|-----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----|
|     | Whole year:               |                                                                                                                                                     |                                                                                                     |     |
| 139 | Quadratic<br>Inequalities | Sketch the quadratic graph of the inequality.                                                                                                       | Solve the inequality $x^2 - x - 12 < 0$                                                             |     |
|     |                           | If the expression is $> or \ge$<br>then the answer will be above<br>the x-axis.<br>If the expression is $< or \le$<br>then the answer will be below | Sketch the quadratic:                                                                               |     |
|     |                           | the x-axis.<br>Look carefully at the<br>inequality symbol in the<br>question.                                                                       | The required region is below the x-axis, so the final answer is:                                    |     |
|     |                           | Look carefully if the quadratic<br>is a positive or negative<br>parabola.                                                                           | -3 < x < 4<br>If the question had been > 0, the answer would have been:                             |     |
|     |                           |                                                                                                                                                     | x < -3  or  x > 4                                                                                   |     |
| 140 | Set Notation              | A set is a collection of things,<br>usually numbers, denoted with<br>brackets { }                                                                   | {3, 6, 9} is a set.<br>$\begin{cases} x \mid x > 0 \\ \uparrow & \uparrow & \downarrow \end{cases}$ |     |
|     |                           | $\{x \mid x \ge 7\}$ means 'the set of<br>all x's, such that x is greater<br>than or equal to 7'                                                    | the set of all $x$ such that $x$ is greater than zero                                               |     |
|     |                           | The 'x' can be replaced by any letter.                                                                                                              | $\{x: -2 \le x < 5\}$                                                                               |     |
|     |                           | Some people use ':' instead of 'I'                                                                                                                  |                                                                                                     |     |
| 141 | Simultaneous<br>Equations | A set of two or more<br>equations, each involving two<br>or more variables (letters).                                                               | 2x + y = 7 $3x - y = 8$                                                                             |     |
|     |                           | The solutions to simultaneous equations satisfy both/all of the equations.                                                                          | x = 3 $y = 1$                                                                                       |     |
| 142 | Variable                  | A symbol, usually a letter,<br>which represents a number<br>which is usually unknown.                                                               | In the equation $x + 2 = 5$ , x is the variable.                                                    |     |



|     | MATHS - YEAR 11<br>Higher Tier                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                               |  |  |
|-----|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     | Whole year:                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                               |  |  |
| 143 | Coefficient                                               | A number used to multiply a variable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6z                                                                                                                                                                                                                                                                            |  |  |
|     |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 is the coefficient                                                                                                                                                                                                                                                          |  |  |
|     |                                                           | It is the number that comes before/in front of a letter.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | z is the variable                                                                                                                                                                                                                                                             |  |  |
| 144 | Solving<br>Simultaneous<br>Equations (by<br>Elimination)  | <ol> <li>Balance the coefficients of<br/>one of the variables.</li> <li>Eliminate this variable by<br/>adding or subtracting the<br/>equations (Same Sign<br/>Subtract, Different Sign Add)</li> <li>Solve the linear equation<br/>you get using the other<br/>variable.</li> <li>Substitute the value you<br/>found back into one of the<br/>previous equations.</li> <li>Solve the equation you get.</li> <li>Check that the two values<br/>you get satisfy both of the<br/>original equations.</li> </ol> | 5x + 2y = 9<br>10x + 3y = 16<br>Multiply the first equation by 2.<br>10x + 4y = 18<br>10x + 3y = 16<br>Same Sign Subtract (+10x on both)<br>y = 2<br>Substitute $y = 2$ in to equation.<br>$5x + 2 \times 2 = 9$<br>5x + 4 = 9<br>5x = 5<br>x = 1                             |  |  |
| 145 | Solving<br>Simultaneous<br>Equations (by<br>Substitution) | <ol> <li>Rearrange one of the equations into the form y = or x =</li> <li>Substitute the right-hand side of the rearranged equation into the other equation.</li> <li>Expand and solve this equation.</li> <li>Substitute the value into the y = or x = equation.</li> <li>Check that the two values you get satisfy both of the original equations.</li> </ol>                                                                                                                                              | Solution: $x = 1, y = 2$<br>y - 2x = 3<br>3x + 4y = 1<br>Rearrange: $y - 2x = 3 \rightarrow y =$<br>2x + 3<br>Substitute: $3x + 4(2x + 3) = 1$<br>Solve: $3x + 8x + 12 = 1$<br>11x = -11<br>x = -1<br>Substitute: $y = 2 \times -1 + 3$<br>y = 1<br>Solution: $x = -1, y = 1$ |  |  |



|     |                                      | MATHS - YEAR 11<br>Higher Tier                                                      |                                                                                                                          | RAG |
|-----|--------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:                          |                                                                                     |                                                                                                                          |     |
| 146 | Solving<br>Simultaneous<br>Equations | Draw the graphs of the two equations.                                               | y = 2x - 1                                                                                                               |     |
|     | (Graphically)                        | The solutions will be where the lines meet.                                         |                                                                                                                          |     |
|     |                                      | The solution can be written as a coordinate.                                        | y = 5 - x and $y = 2x - 1$ .<br>They meet at the point with<br>coordinates (2,3) so the answer<br>is $x = 2$ and $y = 3$ |     |
| 147 | Linear Graph                         | Straight line graph.                                                                | Example:                                                                                                                 |     |
|     |                                      | The equation of a linear graph<br>can contain an x-term, a y-<br>term and a number. | 5 <sup>4</sup> Y                                                                                                         |     |
|     |                                      | Examples:                                                                           |                                                                                                                          |     |
|     |                                      | x = y                                                                               | -5 4 ·3 ·2 1 ·1 · 2 ·3 4 5                                                                                               |     |
|     |                                      | y = 4                                                                               |                                                                                                                          |     |
|     |                                      | x = -2                                                                              | 38                                                                                                                       |     |
|     |                                      | y = 2x - 7                                                                          | 5                                                                                                                        |     |
|     |                                      | y + x = 10                                                                          |                                                                                                                          |     |
|     |                                      | 2y - 4x = 12                                                                        |                                                                                                                          |     |
| 148 | Quadratic<br>Graph                   | A 'U-shaped' curve called a parabola.                                               | y  y  = x <sup>2</sup> -4x-5                                                                                             |     |
|     |                                      | The equation is of the form                                                         | -1 5 x                                                                                                                   |     |
|     |                                      | $y = ax^2 + bx + c$ , where $a, b$<br>and $c$ are numbers, $a \neq 0$ .             | (2, -9)                                                                                                                  |     |
|     |                                      | If $a < 0$ , the parabola is upside down.                                           |                                                                                                                          |     |
|     |                                      |                                                                                     |                                                                                                                          |     |





|     |                      | MATHS - YEAR 11<br>Higher Tier                                                                                    |                        | RAG |
|-----|----------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|-----|
|     | Whole year:          |                                                                                                                   |                        |     |
| 149 | Cubic Graph          | The equation is of the form $y = ax^3 + k$ , where k is an number.                                                |                        |     |
|     |                      | If $a > 0$ , the curve is increasing.                                                                             |                        |     |
|     |                      | If $a < 0$ , the curve is decreasing.                                                                             |                        |     |
| 150 | Reciprocal<br>Graph  | The equation is of the form $y = \frac{A}{x}$ , where A is a number and $x \neq 0$ .                              | $y \uparrow$           |     |
|     |                      | The graph has asymptotes on<br>the x-axis and y-axis.                                                             |                        |     |
| 151 | Asymptote            | A straight line that a graph approaches but never touches.                                                        | y horizontal asymptote |     |
|     |                      |                                                                                                                   | vertical asymptot      |     |
| 152 | Exponential<br>Graph | The equation is of the form $y = a^x$ , where $a$ is a number called the base.<br>If $a > 1$ the graph increases. |                        |     |
|     |                      | If $0 < a < 1$ , the graph decreases.                                                                             | 2 0 2 2                |     |
|     |                      | The graph has an asymptote which is the x-axis.                                                                   |                        |     |





|     | MATHS - YEAR 11<br>Higher Tier |                                                                     |                                                         | RAG |
|-----|--------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|-----|
|     | Whole year:                    |                                                                     |                                                         |     |
| 153 | $y = \sin x$                   | Key Coordinates:                                                    |                                                         |     |
|     |                                | (0,0), (90,1), (180,0), (270, -1), (                                |                                                         |     |
|     |                                | <i>y</i> is never more than 1 or less than -1.                      | 90° 180° 270° 360° 450° 540° 630° 720°<br>- 1.0         |     |
|     |                                | Pattern repeats every 360°.                                         |                                                         |     |
| 154 | $y = \cos x$                   | Key Coordinates:                                                    |                                                         |     |
|     |                                | (0,1), (90,0), (180, -1),                                           | graph of y = cosine $\theta$                            |     |
|     |                                | (270,0), (360,1)                                                    | 90 180° 270° 360° 450° 540° 630° 720°                   |     |
|     |                                | <i>y</i> is never more than 1 or less than -1.                      | 90° 180° 270° 360° 450° 540° 630° 720°<br>- 1.0         |     |
|     |                                | Pattern repeats every 360°.                                         |                                                         |     |
| 155 | $y = \tan x$                   | Key Coordinates:                                                    |                                                         |     |
|     |                                | (0,0), (45,1), (135, -1), (180,0),                                  | y graph of y= tan θ                                     |     |
|     |                                | (225,1), (315, -1), (360,0)                                         |                                                         |     |
|     |                                | Asymptotes at $x = 90$ and $x = 270$<br>Pattern repeats every 360°. | θ<br>90° 180° 270° 360° 450° 540° 630° 720°<br>-2<br>-4 |     |
| 156 | f(x) + a                       | Vertical translation up a units. $\binom{0}{a}$                     | f(x) y f(x) + 3                                         |     |
|     |                                |                                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$   |     |





|     |                        | MATHS - YEAR 11<br>Higher Tier                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RAG |
|-----|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:            |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 157 |                        | Horizontal translation left a units. $\begin{pmatrix} -a \\ 0 \end{pmatrix}$                                                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 158 | -f(x)                  | Reflection over the x-axis.                                                                                                                             | -f(x) $x$ $f(x)$ $f($   |     |
| 159 | <i>f</i> (- <i>x</i> ) | Reflection over the y-axis.                                                                                                                             | f(-x) = y = f(x) $f(x) = y = f(x)$ $f(x) = y = y = y$ $f(x) = y = y$ $f(x) = y = y$ $f(x) = y$      |     |
| 160 | Area Under a<br>Curve  | To find the area under a<br>curve, split it up into simpler<br>shapes - such as rectangles,<br>triangles and trapeziums -<br>that approximate the area. | $(y_{u})$ $(y_{$ |     |
| 161 | Tangent to a<br>Curve  | A straight line that touches a curve at exactly one point.                                                                                              | Y<br>Tangent line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |



|     |                         | MATHS - YEAR 11<br>Higher Tier                                                                                                           |                                                                   | RAG |
|-----|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----|
|     | Whole year:             |                                                                                                                                          |                                                                   |     |
| 162 |                         | The gradient of a curve at a point is the same as the gradient of the tangent at that point.                                             |                                                                   |     |
|     |                         | 1. Draw a tangent carefully at the point.                                                                                                |                                                                   |     |
|     |                         | 2. Make a right-angled triangle.                                                                                                         | Time (hours)                                                      |     |
|     |                         | 3. Use the measurements on<br>the axes to calculate the rise<br>and run (change in y and<br>change in x)                                 | $Gradient = \frac{Change in y}{Change in x}$ $= \frac{16}{2} = 8$ |     |
|     |                         | 4. Calculate the gradient.                                                                                                               | $=\frac{1}{2}=8$                                                  |     |
| 163 | Rate of Change          | The rate of change at a<br>particular instant in time is<br>represented by the gradient of<br>the tangent to the curve at<br>that point. | Negative rate<br>of change<br>o 2 4 6 8<br>There (s)              |     |
| 164 | Distance-Time<br>Graphs | You can find the speed from<br>the gradient of the line<br>(Distance ÷ Time)                                                             | Distance (Km)                                                     |     |
|     |                         | The steeper the line, the quicker the speed.                                                                                             |                                                                   |     |
|     |                         | A horizontal line means the object is not moving (stationary).                                                                           | Time (Hours)                                                      |     |
| 165 | Velocity-Time<br>Graphs | You can find the acceleration<br>from the gradient of the line<br>(Change in Velocity ÷ Time)                                            | Velocity 2                                                        |     |
|     |                         | The steeper the line, the quicker the acceleration.                                                                                      | (m/s)                                                             |     |
|     |                         | A horizontal line represents no acceleration, meaning a constant velocity.                                                               | Time (Seconds)                                                    |     |
|     |                         | The area under the graph is the distance.                                                                                                |                                                                   |     |





|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                                    |                                                                                                                                                                         |  |  |
|-----|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     | Whole year:                    |                                                                                                                                    |                                                                                                                                                                         |  |  |
| 166 | Equation of a<br>Circle        | The equation of a circle,<br>centre (0,0), radius r, is:                                                                           | $y_{1} = \frac{y_{1}}{5} (x, y) = x^{2} + y^{2} = 25$                                                                                                                   |  |  |
|     |                                | $x^2 + y^2 = r^2$                                                                                                                  |                                                                                                                                                                         |  |  |
| 167 | Tangent                        | A straight line that touches a                                                                                                     | A                                                                                                                                                                       |  |  |
|     |                                | circle at exactly one point,<br>never entering the circle's<br>interior.                                                           | c<br>GG.s                                                                                                                                                               |  |  |
|     |                                | A radius is perpendicular to a tangent at the point of contact.                                                                    |                                                                                                                                                                         |  |  |
| 168 | Gradient                       | Gradient is another word for<br>slope.<br>$G = \frac{Rise}{Run} = \frac{Change in y}{Change in x}$ $= \frac{y_2 - y_1}{x_2 - x_1}$ | $(x_{2},y_{2})$ $B (-3, 4)$ $GRADIENT between$ $A at (3,-2) and B at (-3)$ $m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}$ $m = \frac{4 - 2}{-3 - 3}$ $m = 6/-6 = 1 \sqrt{2}$ |  |  |
| 169 | Polygon                        | A 2D shape with only straight edges.                                                                                               | Rectangle, Hexagon, Decagon,<br>Kite etc.                                                                                                                               |  |  |
| 170 | Regular                        | A shape is regular if all the sides and all the angles are equal.                                                                  | Some examples:                                                                                                                                                          |  |  |
| 171 | Names of                       | 3-sided = Triangle                                                                                                                 |                                                                                                                                                                         |  |  |
|     | Polygons                       | 4-sided = Quadrilateral                                                                                                            | Triangle Quadrilateral Pentagon Hexagon                                                                                                                                 |  |  |
|     |                                | 5-sided = Pentagon                                                                                                                 |                                                                                                                                                                         |  |  |
|     |                                | 6-sided = Hexagon                                                                                                                  | Heptagon Octagon Nonagon Decagon                                                                                                                                        |  |  |
|     |                                | 7-sided = Heptagon                                                                                                                 |                                                                                                                                                                         |  |  |
|     |                                | 8-sided = Octagon                                                                                                                  |                                                                                                                                                                         |  |  |
|     |                                | 9-sided = Nonagon                                                                                                                  |                                                                                                                                                                         |  |  |
|     |                                | 10-sided = Decagon                                                                                                                 |                                                                                                                                                                         |  |  |



|     |                         | MATHS - YEAR 11<br>Higher Tier                                                                                                                      |                                                          | RAG |
|-----|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----|
|     | Whole year:             |                                                                                                                                                     |                                                          |     |
| 172 |                         | A prism is a 3D shape whose<br>cross section is the same<br>throughout.                                                                             | Triangle<br>Prism<br>Pentagonal Prism<br>Hexagonal Prism |     |
|     | Cross Section           | The cross section is the shape<br>that continues all the way<br>through the prism.                                                                  | Cross Section                                            |     |
| 174 | Net                     | A pattern that you can cut and<br>fold to make a model of a 3D<br>shape.                                                                            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$   |     |
|     | Properties of<br>Solids | Faces = flat surfaces<br>Edges = sides/lengths<br>Vertices = corners                                                                                | A cube has 6 faces, 12 edges and<br>8 vertices.          |     |
| 176 | Plans and<br>Elevations | This takes 3D drawings and<br>produces 2D drawings.<br>Plan View: from above<br>Side Elevation: from the side<br>Front Elevation: from the<br>front | 2D Drawings<br>Plan Front Elevation Side Elevation       |     |



|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                         |                                         |  |
|-----|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
|     | Whole year:                    | <b></b>                                                                                                                 |                                         |  |
| 177 |                                | A method for visually<br>representing 3D objects in 2D.                                                                 | 2cm<br>4cm<br>4cm                       |  |
| 178 | Types of Angles                | Acute angles are less than<br>90°.<br>Right angles are exactly 90°.                                                     | Acute Right Obtuse Reflex               |  |
|     |                                | Obtuse angles are greater<br>than 90° but less than 180°.<br>Reflex angles are greater than<br>180° but less than 360°. |                                         |  |
| 179 | Angle Notation                 | Can use one lower-case<br>letters, eg. $\theta$ or $x$<br>Can use three upper-case<br>letters, eg. <i>BAC</i>           |                                         |  |
| 180 | Angles at a<br>Point           | Angles around a point add up to 360°.                                                                                   | $\frac{d}{c} a$ $a+b+c+d = 360^{\circ}$ |  |
| 181 | Angles on a<br>Straight Line   | Angles around a point on a straight line add up to 180°.                                                                | $x y$ $x + y = 180^{\circ}$             |  |
| 182 | Opposite<br>Angles             | Vertically opposite angles are equal.                                                                                   | $\frac{x}{y}$                           |  |
| 183 | Alternate<br>Angles            | Alternate angles are equal.<br>They look like Z angles, but<br>never say this in the exam.                              | x y                                     |  |



|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                        |                                                                           |  |
|-----|--------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
|     | Whole year:                    |                                                                                                                        |                                                                           |  |
| 184 |                                | Corresponding angles are equal.                                                                                        |                                                                           |  |
|     |                                | They look like F angles, but never say this in the exam.                                                               | x                                                                         |  |
| 185 | Co-Interior<br>Angles          | Co-Interior angles add up to 180°.                                                                                     | $y x \rightarrow$                                                         |  |
|     |                                | They look like C angles, but never say this in the exam.                                                               | <u>x y</u>                                                                |  |
| 186 | Angles in a<br>Triangle        | Angles in a triangle add up to 180°.                                                                                   | B 45° 55° C                                                               |  |
| 187 | Types of<br>Triangles          | Right Angle Triangles have a<br>90° angle in.<br>Isosceles Triangles have 2<br>equal sides and 2 equal base<br>angles. | Right Angled Isosceles                                                    |  |
|     |                                | Equilateral Triangles have 3 equal sides and 3 equal angles (60°).                                                     | 60'                                                                       |  |
|     |                                | Scalene Triangles have different sides and different angles.                                                           | 60° 60°<br>Equilateral Scalene                                            |  |
|     |                                | Base angles in an isosceles triangle are equal.                                                                        |                                                                           |  |
| 188 | Angles in a<br>Quadrilateral   | Angles in a quadrilateral add up to 360°.                                                                              | 65 <sup>0</sup> 93 0                                                      |  |
| 189 | Sum of Interior<br>Angles      | $(n-2) \times 180$<br>where n is the number of sides.                                                                  | Sum of Interior Angles in a<br>Decagon = $(10 - 2) \times 180 =$<br>1440° |  |



|     |                                                      | MATHS - YEAR 11<br>Higher Tier                                                                            |                                                                                                 | RAG |
|-----|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----|
|     | Whole year:                                          |                                                                                                           |                                                                                                 |     |
| 190 |                                                      | $\frac{(n-2) \times 180}{n}$ You can also use the formula:<br>180 - Size of Exterior Angle                | Size of Interior Angle in a<br>Regular Pentagon =<br>$\frac{(5-2) \times 180}{5} = 108^{\circ}$ |     |
| 191 | Size of Exterior<br>Angle in a<br>Regular<br>Polygon | $\frac{360}{n}$ You can also use the formula: $180 - Size \ of \ Interior \ Angle$                        | Size of Exterior Angle in a<br>Regular Octagon = $\frac{360}{8} = 45^{\circ}$                   |     |
| 192 | Perimeter                                            | The total distance around the outside of a shape.<br>Units include: <i>mm</i> , <i>cm</i> , <i>m</i> etc. | 8 cm<br>5 cm<br>P = 8 + 5 + 8 + 5 = 26cm                                                        |     |
| 193 | Area                                                 | The amount of space inside a shape.<br>Units include: $mm^2, cm^2, m^2$                                   |                                                                                                 |     |
| 194 | Area of a<br>Rectangle                               | Length x Width                                                                                            | $4 \text{ cm}$ $A = 36 cm^2$                                                                    |     |
| 195 | Area of a<br>Parallelogram                           | Base x Perpendicular Height<br>Not the slanted height.                                                    | 4 cm $3 cm7 cmA = 21 \text{cm}^2$                                                               |     |



|     |                        | MATHS - YEAR 11<br>Higher Tier                                                                                                                                  |                                                                                              | RAG |
|-----|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|
|     | Whole year:            |                                                                                                                                                                 |                                                                                              |     |
| 196 | Area of a<br>Triangle  | Base x Height ÷ 2                                                                                                                                               | $9$ $4$ $5$ $12$ $A = 24cm^2$                                                                |     |
| 197 | Area of a<br>Trapezium | $\frac{(a+b)}{2} \times h$<br>"Half the sum of the parallel<br>side, times the height<br>between them. That is how<br>you calculate the area of a<br>trapezium" | $6 \text{ cm}$ $5 \text{ cm}$ $16 \text{ cm}$ $(a = 6, b = 16, h = 5)$ $A = 55 \text{ cm}^2$ |     |
| 198 | Compound<br>Shape      | A shape made up of a<br>combination of other shapes<br>put together                                                                                             |                                                                                              |     |
| 199 | Surface Area           | The total area of<br>the surface of a three-<br>dimensional object.                                                                                             | The surface area of a cube is the area of all 6 faces added together.                        |     |
| 200 | Volume                 | Volume is a measure of the<br>amount of space inside a solid<br>shape.<br>Units: $mm^3$ , $cm^3$ , $m^3$ etc.                                                   |                                                                                              |     |



|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           |  |  |
|-----|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
|     | Whole year:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           |  |  |
| 201 | Volume of a<br>Cube/Cuboid     | V = Area of Cross Section<br>× Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6cm                                                                                       |  |  |
|     |                                | Volume = area of cross-section<br>x length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 cm                                                                                      |  |  |
|     |                                | Volume = 5 x 3 x length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |  |  |
|     |                                | Volume = $15 \times 6 = 90 \text{ cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |  |  |
| 202 | Volume of a<br>Prism           | $V = Area of Cross Section$ $\times Length$ $V = A \times L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Area<br>of cross<br>section                                                               |  |  |
|     |                                | $V - A \wedge L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Length                                                                                    |  |  |
| 203 | Circle                         | A circle is the locus of all<br>points equidistant from a<br>central point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( · ŕ                                                                                     |  |  |
| 204 | Parts of a<br>Circle           | <ul> <li>Radius - the distance from the centre of a circle to the edge</li> <li>Diameter - the total distance across the width of a circle through the centre.</li> <li>Circumference - the total distance around the outside of a circle</li> <li>Chord - a straight line whose end points lie on a circle</li> <li>Tangent - a straight line which touches a circle at exactly one point</li> <li>Arc - a part of the circumference of a circle</li> <li>Sector - the region of a circle enclosed by two radii and their intercepted arc</li> <li>Segment - the region bounded by a chord and the arc created by the chord</li> </ul> | Parts of a Circle<br>Radius Diameter Circumference<br>Chord Arc Tangent<br>Segment Sector |  |  |





|     |                  | MATHS - YEAR 11<br>Higher Tier  |                                                                       | RAG |
|-----|------------------|---------------------------------|-----------------------------------------------------------------------|-----|
|     | Whole year:      |                                 |                                                                       |     |
| 205 | Area of a Circle | $A = \pi r^2$ which means 'pi x | If the radius was 5cm, then:                                          |     |
|     |                  | radius squared'.                |                                                                       |     |
|     |                  |                                 | $A = \pi \times 5^2 = 78.5 cm^2$                                      |     |
|     |                  |                                 |                                                                       |     |
|     |                  |                                 |                                                                       |     |
| 206 | Circumference    | $C = \pi d$ which means 'pi x   | If the radius was 5cm, then:                                          |     |
|     | of a Circle      | diameter'                       | $C = \pi \times 10 = 31.4cm$                                          |     |
|     |                  |                                 |                                                                       |     |
| 207 | π ('pi')         | Pi is the circumference of a    | Γ S-VAR <sub>1</sub> P Γ DISTR <sub>1</sub> n Γ ►r∠θ <sub>1</sub> Poł |     |
|     |                  | circle divided by the           | 2 3 +                                                                 |     |
|     |                  | diameter.                       | Ran# π DRG▶                                                           |     |
|     |                  |                                 | • EXP Ans                                                             |     |
|     |                  |                                 |                                                                       |     |
|     |                  | $\pi \approx 3.14$              |                                                                       |     |
|     |                  |                                 |                                                                       |     |
|     |                  |                                 |                                                                       |     |
|     |                  |                                 |                                                                       |     |
| 208 | Arc Length of a  | The arc length is part of the   | Arc Length = $\frac{115}{360} \times \pi \times 8 =$                  |     |
|     | Sector           | circumference.                  |                                                                       |     |
|     |                  |                                 | 8.03 <i>cm</i>                                                        |     |
|     |                  |                                 |                                                                       |     |
|     |                  | Take the angle given as a       | Acm B                                                                 |     |
|     |                  | fraction over 360° and          | 0                                                                     |     |
|     |                  | multiply by the                 | 1150                                                                  |     |
|     |                  | circumference.                  |                                                                       |     |
|     |                  |                                 | A                                                                     |     |
| 209 | Area of a        | The area of a sector is part of | Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$            |     |
|     | Sector           | the total area.                 | 360                                                                   |     |
|     |                  |                                 |                                                                       |     |
|     |                  |                                 | o 4cm B                                                               |     |
|     |                  | Take the angle given as a       | 0                                                                     |     |
|     |                  | fraction over 360° and          | 115 <sup>0</sup>                                                      |     |
|     |                  | multiply by the area.           |                                                                       |     |
|     |                  |                                 | A                                                                     |     |
| 210 | Volume of a      | $V = \pi r^2 h$                 |                                                                       |     |
|     | Cylinder         |                                 |                                                                       |     |
|     |                  |                                 | 1                                                                     |     |
|     |                  |                                 | E and                                                                 |     |
|     |                  |                                 | 5cm                                                                   |     |
|     |                  |                                 | 2cm                                                                   |     |
|     |                  |                                 | <b>v</b>                                                              |     |
|     |                  |                                 | $V = \pi(4)(5)$                                                       |     |
|     |                  |                                 |                                                                       |     |
|     |                  |                                 | $= 62.8 cm^3$                                                         |     |
|     |                  |                                 |                                                                       |     |



|     |                               | MATHS - YEAR 11<br>Higher Tier                                                                                                                                                                                                                                                             |                                                                                     | RAG |
|-----|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----|
|     | Whole year:                   |                                                                                                                                                                                                                                                                                            |                                                                                     |     |
| 211 | Surface Area of<br>a Cylinder | Curved Surface Area = $\pi dh$ or<br>$2\pi rh$<br>Total SA = $2\pi r^2 + \pi dh$ or<br>$2\pi r^2 + 2\pi rh$                                                                                                                                                                                | $5cm$ $Total SA = 2\pi(2)^{2} + \pi(4)(5) = 28\pi$                                  |     |
| 212 | Volume of a<br>Cone           | $V = \frac{1}{3}\pi r^2 h$<br>This formula will be given to<br>you in the exam.                                                                                                                                                                                                            | $V = \frac{1}{3}\pi(4)(5)$ $= 20.9cm^{3}$                                           |     |
|     | Surface Area of<br>a Cone     | This formula will be given to<br>you in the exam:<br>Curved Surface Area = $\pi rl$<br>where $l = slant$ height<br>This formula will <u>NOT</u> be<br>given to you in the exam:<br>Total SA = $\pi rl + \pi r^2$<br>You may need to use<br>Pythagoras' Theorem to find<br>the slant height | $5m \sqrt{3m}$ $Total SA = \pi(3)(5) + \pi(3)^2$ $= 24\pi$                          |     |
| 214 | Surface Area of<br>a Sphere   | This formula will be given to ye<br>$SA = 4\pi r^2$<br>Look out for hemispheres -<br>halve the SA of a sphere and<br>add on a circle $(\pi r^2)$                                                                                                                                           | Find the surface area of a sphere with radius 3cm.<br>$SA = 4\pi(3)^2 = 36\pi cm^2$ |     |



|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                                                                                                         |                                                                                                            |  |
|-----|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
|     | Whole year:                    |                                                                                                                                                                                                         |                                                                                                            |  |
| 215 |                                | $Volume = \frac{1}{3}Bh$ where B = area of the base This formula will <u>NOT</u> be given to you in the exam This formula will be given to you in the exam:                                             | $V = \frac{1}{3} \times 6 \times 6 \times 7 = 84cm^{3}$<br>Find the volume of a sphere with diameter 10cm. |  |
|     |                                | $V = \frac{4}{3}\pi r^{3}$<br>Look out for hemispheres -<br>just halve the volume of a<br>sphere.                                                                                                       | $V = \frac{4}{3}\pi(5)^3 = \frac{500\pi}{3}cm^3$                                                           |  |
| 217 | Frustums                       | A frustum is a solid (usually a<br>cone or pyramid) with the top<br>removed.<br>Find the volume of the whole<br>shape, then take away the<br>volume of the small<br>cone/pyramid removed at the<br>top. | $V = \frac{1}{3}\pi(10)^{2}(24) - \frac{1}{3}\pi(5)^{2}(12)$<br>= 700\pi cm^{3}                            |  |
| 218 | Metric System<br>for Length    | A system of measures based<br>on:<br>- the metre for length<br>Length: mm, cm, m, km                                                                                                                    | 1kilometres = 1000 metres<br>1 metre = 100 centimetres<br>1 centimetre = 10 millimetres                    |  |
| 219 | Metric System<br>for Mass      | A system of measures based<br>on:<br>- the kilogram for mass<br>Mass: mg, g, kg, tonne                                                                                                                  | 1 tonne = 1000 kilograms<br>1 kilogram = 1000 grams<br>1 gram = 1000 milligrams                            |  |



|     |                             | MATHS - YEAR 11<br>Higher Tier                                            |                                                                     | RAG |
|-----|-----------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|-----|
|     | Whole year:                 |                                                                           |                                                                     |     |
| 220 | Metric System<br>for Volume | A system of measures based on:                                            | 1 litre = 1000 millilitres                                          |     |
|     |                             | the litre for volume                                                      | $1 \ centilitre = 10 \ millilitres$                                 |     |
|     |                             | - the litre for volume<br>Volume: ml, cl, l                               | 1 litre = 100 centilitre                                            |     |
| 221 | •                           | A system of weights and                                                   | 1lb = 16 ounces                                                     |     |
|     | System                      | measures originally developed<br>in England, usually based on             | 1 foot = 12 inches                                                  |     |
|     |                             | human quantities                                                          | $1 \ gallon = 8 \ pints$                                            |     |
|     |                             | Length: inch, foot, yard, miles                                           |                                                                     |     |
|     |                             | Mass: lb, ounce, stone                                                    |                                                                     |     |
|     |                             | Volume: pint, gallon                                                      |                                                                     |     |
| 222 | Metric and                  | Use the unitary method to                                                 | 5 miles ≈ 8 kilometres                                              |     |
|     | Imperial Units              | nperial Units convert between metric and imperial units.                  | $1 \ gallon \approx 4.5 \ litres$                                   |     |
|     |                             |                                                                           | 2.2 pounds $\approx$ 1 kilogram                                     |     |
|     |                             |                                                                           | 1 inch = 2.5 centimetres                                            |     |
| 223 | Scale                       | The ratio of the length in a<br>model to the length of the<br>real thing. | Scale 1:10                                                          |     |
|     |                             |                                                                           | Real HorseDrawn Horse1500 mm high150 mm high2000 mm long200 mm long |     |
| 224 | Scale (Map)                 | The ratio of a distance on the map to the actual distance in real life.   | 1 in. = 250 mi<br>1 cm = 160 km                                     |     |
|     |                             |                                                                           |                                                                     |     |





|     |                       | MATHS - YEAR 11<br>Higher Tier                                                                                                                     |                                                     | RAG |
|-----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----|
|     | Whole year:           |                                                                                                                                                    |                                                     |     |
| 225 |                       | 1. Measure from North (draw a North line)                                                                                                          | The bearing of $\underline{B}$ from $\underline{A}$ |     |
|     |                       | 2. Measure clockwise                                                                                                                               | A                                                   |     |
|     |                       | 3. Your answer must have 3 digits (eg. 047°)                                                                                                       |                                                     |     |
|     |                       | Look out for where the bearing is measured from.                                                                                                   | The bearing of $\underline{A}$ from $\underline{B}$ |     |
| 226 | Compass<br>Directions | You can use an acronym such<br>as 'Never Eat Shredded<br>Wheat' to remember the<br>order of the compass<br>directions in a clockwise<br>direction. |                                                     |     |
|     |                       | Bearings: $NE = 045^\circ$ , $W = 270^\circ etc$ .                                                                                                 |                                                     |     |
| 227 | 1                     | Angles in a semi-circle have a right angle at the circumference.                                                                                   | $y = 90^{\circ}$ $x = 180 - 90 - 38 = 52^{\circ}$   |     |
| 228 | Circle Theorem<br>2   | Opposite angles in a cyclic quadrilateral add up to $180^{\circ}$ .                                                                                |                                                     |     |



|     |                                    | MATHS - YEAR 11                                                             |                                   | RAG |
|-----|------------------------------------|-----------------------------------------------------------------------------|-----------------------------------|-----|
|     | Whole years                        | Higher Tier                                                                 |                                   |     |
| 229 | Whole year:<br>Circle Theorem<br>3 | The angle at the centre is twice the angle at the circumference. $\sqrt{a}$ | $x = 104 \div 2 = 52^{\circ}$     |     |
| 230 | Circle Theorem<br>4                | Angles in the same segment are equal.                                       | $x = 42^{\circ}$ $y = 31^{\circ}$ |     |
| 231 | Circle Theorem<br>5                | A tangent is perpendicular to the radius at the point of contact.           | y = 5cm (Pythagoras' Theorem)     |     |





|     |                          | MATHS - YEAR 11<br>Higher Tier                                                                                           |                                                                                                                                       | RAG |
|-----|--------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:              |                                                                                                                          |                                                                                                                                       |     |
| 232 | Circle Theorem<br>6      | Tangents from an external point at equal in length.                                                                      | $\frac{4 \text{cm}}{3 \text{cm}}$                                                                                                     |     |
| 233 | Circle Theorem<br>7      | Alternate Segment Theorem                                                                                                | $x = 52^{\circ},  y = 38^{\circ}$                                                                                                     |     |
| 234 | Speed,<br>Distance, Time | Speed = Distance ÷ Time<br>Distance = Speed x Time<br>Time = Distance ÷ Speed<br>D<br>S T<br>Remember the correct units. | Speed = 4mph<br>Time = 2 hours<br>Find the Distance.<br>$D = S \times T = 4 \times 2 = 8$ miles                                       |     |
| 235 | Density, Mass,<br>Volume | Density = Mass ÷ Volume<br>Mass = Density x Volume<br>Volume = Mass ÷ Density                                            | Density = $8 \text{kg/m}^3$<br>Mass = 2000g<br>Find the Volume.<br>$V = M \div D = 2 \div 8 = 0.25m^3$<br>Remember the correct units. |     |



|     |                         | MATHS - YEAR 11<br>Higher Tier                                               |                                                                                       | RAG |
|-----|-------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----|
|     | Whole year:             |                                                                              |                                                                                       |     |
| 236 | Pressure,               | Pressure = Force ÷ Area                                                      | Pressure = 10 Pascals                                                                 |     |
|     | Force, Area             | Force = Pressure x Area                                                      | Area = 6cm²                                                                           |     |
|     |                         | Area = Force ÷ Pressure                                                      | Find the Force                                                                        |     |
|     |                         | F<br>p X A<br>Remember the correct units.                                    | $F = P \times A = 10 \times 6 = 60 N$                                                 |     |
|     |                         |                                                                              |                                                                                       |     |
| 237 | Distance-Time<br>Graphs | You can find the speed from<br>the gradient of the line<br>(Distance ÷ Time) | Distance<br>(Km)                                                                      |     |
|     |                         | The steeper the line, the quicker the speed.                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                 |     |
|     |                         | A horizontal line means the object is not moving (stationary).               |                                                                                       |     |
| 238 | Congruent<br>Shapes     | Shapes are congruent if they are identical - same shape and same size.       |                                                                                       |     |
|     |                         | Shapes can be rotated or reflected but still be congruent.                   |                                                                                       |     |
| 239 | Congruent<br>Triangles  | 4 ways of proving that two triangles are congruent:                          | $A \underbrace{\begin{array}{c} C \\ G1' \\ 73' \\ 73' \\ Bcm \end{array}}^{C} Bcm F$ |     |
|     |                         | 1. SSS (Side, Side, Side)                                                    | ь V<br>Е                                                                              |     |
|     |                         | 2. RHS (Right angle,<br>Hypotenuse, Side)                                    | $BC = DF$ $\angle ABC = \angle EDF$                                                   |     |
|     |                         | 3. SAS (Side, Angle, Side)                                                   | $\angle ABC = \angle EDF$<br>$\angle ACB = \angle EFD$                                |     |
|     |                         | 4. ASA (Angle, Side, Angle) or AAS                                           | ∴ The two triangles are congruent by AAS.                                             |     |
|     |                         | ASS does not prove congruency.                                               |                                                                                       |     |





|     |                              | MATHS - YEAR 11<br>Higher Tier                                                                                              |                                                                  | RAG |
|-----|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----|
|     | Whole year:                  |                                                                                                                             |                                                                  |     |
| 240 | Similar Shapes               | Shapes are similar if they are the same shape but different sizes.                                                          |                                                                  |     |
|     |                              | The proportion of the<br>matching sides must be the<br>same, meaning the ratios of<br>corresponding sides are all<br>equal. |                                                                  |     |
| 241 | Scale Factor                 | The ratio of corresponding sides of two similar shapes.                                                                     | 16<br>10<br>15                                                   |     |
|     |                              | To find a scale factor, divide a<br>length on one shape by the<br>corresponding length on a<br>similar shape.               | Scale Factor = $15 \div 10 = 1.5$                                |     |
|     |                              |                                                                                                                             |                                                                  |     |
| 242 | Finding missing              | 1. Find the scale factor.                                                                                                   | 2cm 3cm                                                          |     |
|     | lengths in<br>similar shapes | 2. Multiply or divide the<br>corresponding side to find a<br>missing length.                                                | 4.5cm                                                            |     |
|     |                              | If you are finding a missing<br>length on the larger shape you<br>will need to multiply by the<br>scale factor.             |                                                                  |     |
|     |                              | If you are finding a missing<br>length on the smaller shape<br>you will need to divide by the<br>scale factor.              | Scale Factor = $3 \div 2 = 1.5$<br>$x = 4.5 \times 1.5 = 6.75cm$ |     |
| 243 | Similar<br>Triangles         | To show that two triangles are similar, show that:                                                                          |                                                                  |     |
|     |                              | 1. The three sides are in the same proportion                                                                               |                                                                  |     |
|     |                              | 2. Two sides are in the same proportion, and their included angle is the same                                               |                                                                  |     |
|     |                              | 3. The three angles are equal                                                                                               |                                                                  |     |



| MATHS - YEAR 11 |                |                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |
|-----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
|                 | Higher Tier    |                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |
|                 | Whole year:    |                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |
| 244             | Parallel       | Parallel lines never meet.                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |  |  |
| 245             | Perpendicular  | Perpendicular lines are at right angles. There is a 90° angle between them.                                                                                                                                                                                                                                                                                                                    |                 |  |  |  |  |
| 246             | Vertex         | A corner or a point where two<br>lines meet.                                                                                                                                                                                                                                                                                                                                                   | vertex<br>A C C |  |  |  |  |
| 247             | Angle Bisector | <ul> <li>Angle Bisector: Cuts the angle in half.</li> <li>1. Place the sharp end of a pair of compasses on the vertex.</li> <li>2. Draw an arc, marking a point on each line.</li> <li>3. Without changing the compass put the compass on each point and mark a centre point where two arcs cross over.</li> <li>4. Use a ruler to draw a line through the vertex and centre point.</li> </ul> | Angle Bisector  |  |  |  |  |





|     |                                            | MATHS - YEAR 11<br>Higher Tier                                                                                               |               | RAG |
|-----|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------|-----|
|     | Whole year:                                |                                                                                                                              |               |     |
| 248 | Perpendicular<br>Bisector                  | Perpendicular Bisector: Cuts a line in half and at right angles.                                                             | $\mathbf{X}$  |     |
|     |                                            | 1. Put the sharp point of a pair of compasses on A.                                                                          | Line Bisector |     |
|     |                                            | 2. Open the compass over half way on the line.                                                                               |               |     |
|     |                                            | 3. Draw an arc above and below the line.                                                                                     |               |     |
|     |                                            | 4. Without changing the compass, repeat from point B.                                                                        |               |     |
|     |                                            | 5. Draw a straight line through the two intersecting arcs.                                                                   |               |     |
| 249 | Perpendicular<br>from an<br>External Point | The perpendicular distance<br>from a point to a line is the<br>shortest distance to that line.                               | P             |     |
|     |                                            | 1. Put the sharp point of a pair of compasses on the point.                                                                  | X             |     |
|     |                                            | 2. Draw an arc that crosses the line twice.                                                                                  |               |     |
|     |                                            | 3. Place the sharp point of the compass on one of these points, open over half way and draw an arc above and below the line. |               |     |
|     |                                            | 4. Repeat from the other point on the line.                                                                                  |               |     |
|     |                                            | 5. Draw a straight line through the two intersecting arcs.                                                                   |               |     |
|     |                                            |                                                                                                                              |               |     |





|     |                                            | MATHS - YEAR 11<br>Higher Tier                                                                                                  |                   | RAG |
|-----|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|
|     | Whole year:                                |                                                                                                                                 |                   |     |
| 250 | Perpendicular<br>from a Point on<br>a Line | Given line PQ and point R on the line:                                                                                          |                   |     |
|     |                                            | 1. Put the sharp point of a pair of compasses on point R.                                                                       | P $S$ $R$ $T$ $Q$ |     |
|     |                                            | <ol> <li>Draw two arcs either side<br/>of the point of equal width<br/>(giving points S and T)</li> </ol>                       |                   |     |
|     |                                            | 3. Place the compass on point S, open over halfway and draw an arc above the line.                                              |                   |     |
|     |                                            | 4. Repeat from the other arc on the line (point T).                                                                             |                   |     |
|     |                                            | 5. Draw a straight line from the intersecting arcs to the original point on the line.                                           |                   |     |
| 251 | Triangles (Side,                           | 1. Draw the base of the triangle using a ruler.                                                                                 |                   |     |
|     | Side, Side)                                | 2. Open a pair of compasses to the width of one side of the triangle.                                                           |                   |     |
|     |                                            | 3. Place the point on one end of the line and draw an arc.                                                                      |                   |     |
|     |                                            | 4. Repeat for the other side of the triangle at the other end of the line.                                                      |                   |     |
|     |                                            | 5. Using a ruler, draw lines<br>connecting the ends of the<br>base of the triangle to the<br>point where the arcs<br>intersect. |                   |     |
|     |                                            |                                                                                                                                 |                   |     |





|     | MATHS - YEAR 11<br>Higher Tier          |                                                                                                                                 |                                    |  |  |  |
|-----|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|
|     | Whole year:                             |                                                                                                                                 |                                    |  |  |  |
| 252 |                                         | 1. Draw the base of the triangle using a ruler.                                                                                 | Â                                  |  |  |  |
|     | Angle, Side)                            | 2. Measure the angle required using a protractor and mark this angle.                                                           | B 50°<br>7cm                       |  |  |  |
|     |                                         | 3. Remove the protractor and<br>draw a line of the exact<br>length required in line with<br>the angle mark drawn.               |                                    |  |  |  |
|     |                                         | 4. Connect the end of this line<br>to the other end of the base<br>of the triangle.                                             |                                    |  |  |  |
| 253 | Constructing<br>Triangles               | 1. Draw the base of the triangle using a ruler.                                                                                 | ×                                  |  |  |  |
|     | (Angle, Side,<br>Angle)                 | 2. Measure one of the angles required using a protractor and mark this angle.                                                   | y <u>42°</u> <u>51°</u> Z<br>8.3cm |  |  |  |
|     |                                         | 3. Draw a straight line through<br>this point from the same point<br>on the base of the triangle.                               |                                    |  |  |  |
|     |                                         | 4. Repeat this for the other angle on the other end of the base of the triangle.                                                |                                    |  |  |  |
| 254 | Constructing an<br>Equilateral          | 1. Draw the base of the triangle using a ruler.                                                                                 | C                                  |  |  |  |
|     | Triangle (also<br>makes a 60°<br>angle) | 2. Open the pair of compasses to the exact length of the side of the triangle.                                                  |                                    |  |  |  |
|     |                                         | 3. Place the sharp point on one end of the line and draw an arc.                                                                | A B                                |  |  |  |
|     |                                         | 4. Repeat this from the other end of the line.                                                                                  |                                    |  |  |  |
|     |                                         | 5. Using a ruler, draw lines<br>connecting the ends of the<br>base of the triangle to the<br>point where the arcs<br>intersect. |                                    |  |  |  |





|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                                  |                                                         |  |  |  |  |
|-----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
|     | Whole year:                    |                                                                                                                                  |                                                         |  |  |  |  |
| 255 | Loci and<br>Regions            | A locus is a path of points that<br>follow a rule.<br>For the locus of points closer                                             | AB                                                      |  |  |  |  |
|     |                                | to B than A, create a<br>perpendicular bisector<br>between A and B and shade<br>the side closer to B.                            | Points Closer to B than A.                              |  |  |  |  |
|     |                                | For the locus of points<br>equidistant from A, use a<br>compass to draw a circle,<br>centre A.                                   | , 2cm<br>A A A                                          |  |  |  |  |
|     |                                |                                                                                                                                  | Points less than Points more than 2cm from A 2cm from A |  |  |  |  |
|     |                                | For the locus of points<br>equidistant to line X and line<br>Y, create an angle bisector.                                        | r<br>D<br>E                                             |  |  |  |  |
|     |                                | For the locus of points a set<br>distance from a line, create<br>two semi-circles at either end<br>joined by two parallel lines. |                                                         |  |  |  |  |
| 256 | Equidistant                    | A point is equidistant from a<br>set of objects if the distances<br>between that point and each<br>of the objects is the same.   |                                                         |  |  |  |  |



|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                             |                                                                                                                                             |  |  |  |  |
|-----|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | Whole year:                    |                                                                                                                             |                                                                                                                                             |  |  |  |  |
| 257 | Pythagoras'<br>Theorem         | For any right angled triangle:<br>$a^2 + b^2 = c^2$                                                                         | y<br>Finding a Shorter Side<br>10<br>SUBTRACT:<br>8                                                                                         |  |  |  |  |
|     |                                | a c b                                                                                                                       | a = y, b = 8, c = 10<br>$a^{2} = c^{2} - b^{2}$<br>$y^{2} = 100 - 64$<br>$y^{2} = 36$<br>y = 6                                              |  |  |  |  |
|     |                                | Used to find missing lengths.                                                                                               |                                                                                                                                             |  |  |  |  |
|     |                                | a and b are the shorter sides,<br>c is the hypotenuse (longest<br>side).                                                    |                                                                                                                                             |  |  |  |  |
| 258 | 3D Pythagoras'<br>Theorem      | Find missing lengths by identifying right angled triangles.                                                                 | Can a pencil that is 20cm long fit<br>in a pencil tin with dimensions<br>12cm, 13cm and 9cm? The pencil<br>tin is in the shape of a cuboid. |  |  |  |  |
|     |                                | You will often have to find a<br>missing length you are not<br>asked for before finding the<br>missing length you are asked | Hypotenuse of the base = $\sqrt{12^2 + 13^2} = 17.7$                                                                                        |  |  |  |  |
|     |                                | for.                                                                                                                        | Diagonal of cuboid =<br>$\sqrt{17.7^2 + 9^2} = 19.8cm$                                                                                      |  |  |  |  |
|     |                                |                                                                                                                             | No, the pencil cannot fit.                                                                                                                  |  |  |  |  |
|     | Trigonometry                   | The study of triangles.                                                                                                     |                                                                                                                                             |  |  |  |  |
| 260 | Hypotenuse                     | The longest side of a right-<br>angled triangle.                                                                            | hypotenuse                                                                                                                                  |  |  |  |  |
|     |                                | Is always opposite the right angle.                                                                                         |                                                                                                                                             |  |  |  |  |
| 261 | Adjacent                       | Next to                                                                                                                     | P<br>atisodido<br>R Adjacent $Q$                                                                                                            |  |  |  |  |





| MATHS - YEAR 11<br>Higher Tier |                           |                                                                                                                                     |                                                                                   |  |  |
|--------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
|                                | Whole year:               |                                                                                                                                     |                                                                                   |  |  |
| 262.                           | Trigonometric<br>Formulae | Use SOHCAHTOA.<br>$\sin \theta = \frac{O}{H}$                                                                                       | x<br>35°                                                                          |  |  |
|                                |                           | $\sin \theta = \frac{H}{H}$ $\cos \theta = \frac{A}{H}$                                                                             | Use 'Opposite' and 'Adjacent',                                                    |  |  |
|                                |                           | $\tan \theta = \frac{O}{A}$                                                                                                         | so use 'tan'<br>$\tan 35 = \frac{x}{11}$                                          |  |  |
|                                |                           |                                                                                                                                     | $x = 11 \tan 35 = 7.70 cm$                                                        |  |  |
|                                |                           | S     H     C     H     T     A       When finding a missing angle,                                                                 | 7cm<br>x                                                                          |  |  |
|                                |                           | use the 'inverse'<br>trigonometric function by<br>pressing the 'shift' button on<br>the calculator.                                 | 5cm<br>Use 'Adjacent' and<br>'Hypotenuse', so use 'cos'<br>$\cos x = \frac{5}{7}$ |  |  |
|                                |                           |                                                                                                                                     | $x = \cos^{-1}\left(\frac{5}{7}\right) = 44.4^{\circ}$                            |  |  |
| 263                            | 3D<br>Trigonometry        | Find missing lengths by identifying right angled triangles.                                                                         | A B                                                                               |  |  |
|                                |                           | You will often have to find a<br>missing length you are not<br>asked for before finding the<br>missing length you are asked<br>for. |                                                                                   |  |  |





|     | MATHS - YEAR 11<br>Higher Tier |               |                          |                      |                      | RAG                  |                      |                                         |  |
|-----|--------------------------------|---------------|--------------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------------------|--|
|     | Whole year:                    |               |                          |                      |                      |                      |                      |                                         |  |
| 264 | 5                              |               |                          |                      |                      |                      |                      |                                         |  |
|     | values                         |               | 0°                       | 30°                  | 45°                  | 0.00                 | 0.00                 | 7                                       |  |
|     |                                |               |                          | 30*                  | 45                   | 60°                  | 90°                  | -                                       |  |
|     |                                | $\sin \theta$ | $\frac{\sqrt{0}}{2}$     | $\frac{\sqrt{1}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{4}}{2}$ |                                         |  |
|     |                                |               |                          |                      |                      | -                    |                      | -                                       |  |
|     |                                | $\cos \theta$ | $\frac{\sqrt{4}}{2}$     | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{1}}{2}$ | $\frac{\sqrt{0}}{2}$ |                                         |  |
|     |                                |               | 2                        |                      | 2                    | 2                    | 2                    | -                                       |  |
|     |                                | $\tan \theta$ | 0                        | $\frac{\sqrt{3}}{3}$ | 1                    | √ 3                  | ±∞                   |                                         |  |
|     |                                |               |                          | 152                  |                      |                      |                      | 1                                       |  |
|     |                                |               |                          |                      |                      |                      |                      |                                         |  |
| 265 | Translation                    | Transl        |                          | eans t               | o mov                | 'e a                 |                      | R                                       |  |
|     |                                | shape         |                          |                      |                      |                      | Q                    |                                         |  |
|     |                                | The sh        | nape d                   | loes no              | ot cha               | nge                  | 3                    | 3<br>▼ 4 ► R'                           |  |
|     |                                | size oi       | r orier                  | ntatior              | า.                   |                      | •                    |                                         |  |
|     |                                |               |                          |                      |                      |                      |                      |                                         |  |
|     |                                |               |                          |                      |                      |                      |                      |                                         |  |
|     |                                |               |                          |                      |                      |                      |                      | 4 » P'                                  |  |
|     |                                |               |                          |                      |                      |                      |                      |                                         |  |
|     |                                |               |                          |                      |                      |                      |                      |                                         |  |
| 266 | Column Vector                  | In a co       | olumn                    | vecto                | r, the               | top                  | (2                   | $\frac{2}{1}$ mapping (2 right 2 up)    |  |
|     |                                | numbe         |                          |                      |                      | -                    | :   (3               | $\binom{2}{3}$ means '2 right, 3 up'    |  |
|     |                                | (+) an        |                          |                      |                      |                      |                      |                                         |  |
|     |                                | moves         | moves up (+) or down (-) |                      |                      | •)                   | (-                   | -1)                                     |  |
|     |                                |               |                          |                      |                      |                      | (_                   | $\binom{-1}{-5}$ means '1 left, 5 down' |  |
| 267 | Rotation                       | The size      | ze doe                   | es not               | chang                | e, but               | R                    | otate Shape A 90° anti-                 |  |
|     |                                | the sh        |                          |                      | -                    |                      |                      | ockwise about (0,1)                     |  |
|     |                                | point.        |                          |                      |                      |                      |                      |                                         |  |
|     |                                |               |                          |                      |                      |                      |                      |                                         |  |
|     |                                |               | •                        |                      |                      |                      |                      | Y                                       |  |
|     |                                | Use tr        | acing                    | paper                | •                    |                      |                      |                                         |  |
|     |                                |               |                          |                      |                      |                      |                      |                                         |  |
|     |                                |               |                          |                      |                      |                      | -                    |                                         |  |
|     |                                |               |                          |                      |                      |                      | -                    |                                         |  |
|     |                                |               |                          |                      |                      |                      | 17                   |                                         |  |
|     |                                |               |                          |                      |                      |                      | X                    |                                         |  |
|     |                                |               |                          |                      |                      |                      | •                    | Υ.                                      |  |
|     |                                |               |                          |                      |                      |                      |                      |                                         |  |
|     |                                |               |                          |                      |                      |                      |                      |                                         |  |
|     |                                |               |                          |                      |                      |                      |                      |                                         |  |



| MATHS - YEAR 11<br>Higher Tier |                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                        |  |  |
|--------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                | Whole year:                             | <b>~</b>                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                        |  |  |
| 268                            |                                         | The size does not change, but<br>the shape is 'flipped' like in a<br>mirror.                                                                                                                                                                                                                                                                    | Reflect shape C in the line $y = x$                                                                                                                                                                    |  |  |
|                                |                                         | Line $x = ?$ is a vertical line.                                                                                                                                                                                                                                                                                                                | 5 B                                                                                                                                                                                                    |  |  |
|                                |                                         | Line $y = ?$ is a horizontal line.                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |  |  |
|                                |                                         | Line $y = x$ is a diagonal line.                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                 |  |  |
| 269                            | Enlargement                             | The shape will get bigger or smaller. Multiply each side by the scale factor.                                                                                                                                                                                                                                                                   | Scale Factor = 3 means '3 times<br>larger = multiply by 3'                                                                                                                                             |  |  |
|                                |                                         |                                                                                                                                                                                                                                                                                                                                                 | Scale Factor = ½ means 'half the size = divide by 2'                                                                                                                                                   |  |  |
| 270                            | Finding the<br>Centre of<br>Enlargement | Draw straight lines through<br>corresponding corners of the<br>two shapes.<br>The centre of enlargement is<br>the point where all the lines<br>cross over.<br>Be careful with negative<br>enlargements as the<br>corresponding corners will be<br>the other way around.                                                                         | A to B is an enlargement<br>SF 2 about the point (2,1)                                                                                                                                                 |  |  |
| 271                            | <b>Describing</b><br>Transformations    | Give the following information<br>when describing each<br>transformation:<br>Look at the number of marks<br>in the question for a hint of<br>how many pieces of<br>information are needed.<br>If you are asked to describe a<br>'transformation', you need to<br>say the name of the type of<br>transformation as well as the<br>other details. | <ul> <li>Translation, Vector</li> <li>Rotation, Direction, Angle,<br/>Centre</li> <li>Reflection, Equation of mirror<br/>line</li> <li>Enlargement, Scale factor,<br/>Centre of enlargement</li> </ul> |  |  |



|     |                                            | MATHS - YEAR 11<br>Higher Tier                                                                                                                                          |                                                                                                                                                                                                                                                                                                    | RAG |
|-----|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |     |
| 272 | Fractional<br>Scale Factor<br>Enlargements | A fractional enlargement<br>makes a shape smaller.                                                                                                                      | 10 <sup>4</sup><br>9<br>8<br>7<br>6<br>5<br>4<br>3<br>2<br>1<br>1<br>2<br>2<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>6<br>6<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |     |
| 273 | Negative Scale<br>Factor<br>Enlargements   | Negative enlargements will<br>look like they have been<br>rotated.<br>SF = -2 will be rotated, and<br>also twice as big.                                                | Enlarge ABC by scale factor -2,<br>centre (1,1)                                                                                                                                                                                                                                                    |     |
| 274 | Invariance                                 | A point, line or shape is<br>invariant if it does not<br>change/move when a<br>transformation is performed.<br>An invariant point 'does not<br>vary'.                   | If shape P is reflected in the $y - axis$ , then exactly one vertex is invariant.                                                                                                                                                                                                                  |     |
| 275 | Hypothesis                                 | A hypothesis is a statement<br>that might be true or false but<br>you haven't got enough<br>evidence to support it either<br>way YET. A hypothesis must<br>be testable. | For example:<br>Children who go to bed earlier<br>score higher on their class tests                                                                                                                                                                                                                |     |



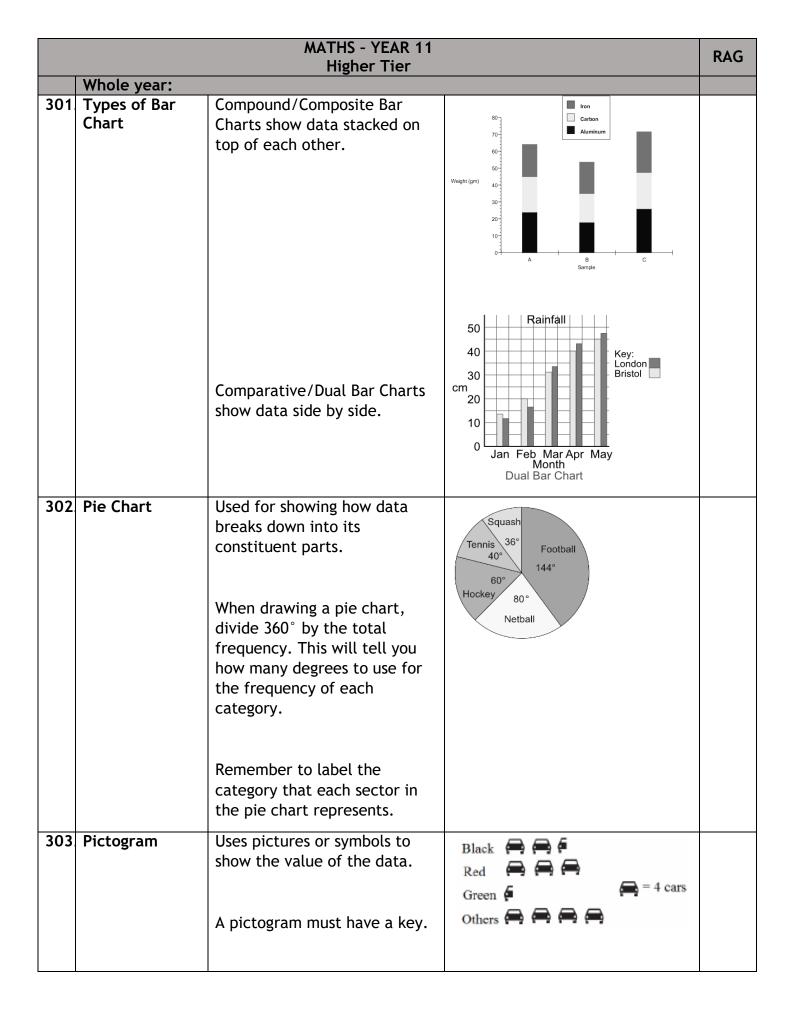
|     |              | MATHS - YEAR 11<br>Higher Tier                                                                                                                                                             |                                                                                                              | RAG |
|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:  |                                                                                                                                                                                            |                                                                                                              |     |
| 276 |              | The data Cycle has five parts to it:<br>1. Planning                                                                                                                                        |                                                                                                              |     |
|     |              | <ul> <li>2. Collecting Data</li> <li>3. Processing and<br/>Representing data</li> <li>4. Interpreting results</li> <li>Communicating results clearly<br/>and evaluating methods</li> </ul> |                                                                                                              |     |
| 277 | Constraints  | During the planning phase you<br>should consider the<br>constraints of your<br>investigation:<br>• Time<br>• Cost<br>• Convenience<br>• Ethical issues<br>Confidentiality                  | For example, people might not<br>want to answer personal<br>questions about their age or<br>where they live. |     |
| 278 | Primary      | Data which you have collected<br>yourself                                                                                                                                                  | For example, you do a survey on<br>your classmates about their<br>favourite food                             |     |
| 279 | Secondary    | Data which someone else has collected                                                                                                                                                      | For example, you use census<br>data to investigate national<br>trends in salaries                            |     |
| 280 | Quantitative | Numerical data                                                                                                                                                                             | For example, how many siblings<br>you have or how tall you are                                               |     |
| 281 | Qualitative  | Descriptive data (using words not numbers)                                                                                                                                                 | For example, your favourite food                                                                             |     |
|     | Discrete     | Numerical (quantitative) data<br>which can be counted                                                                                                                                      | For example, how many siblings<br>you have                                                                   |     |
| 283 | Continuous   | Numerical (quantitative) data which can be measured                                                                                                                                        | For example, your mass or height                                                                             |     |



|     | MATHS - YEAR 11<br>Higher Tier |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-----|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | Whole year:                    |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 284 |                                | Data that has been bundled in to categories.                                                                                                                                                                                                              | Foot length, <i>l</i> , (cm)         Number of children $10 \le l < 12$ 5 $12 \le l < 17$ 53                                                                                                                                                                                                                                   |  |  |  |
|     |                                | Seen in grouped frequency<br>tables, histograms, cumulative<br>frequency etc.                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 285 | Population                     | The whole group you are interested in                                                                                                                                                                                                                     | e.g. the population of the UK                                                                                                                                                                                                                                                                                                  |  |  |  |
| 286 | Sample                         | A group selected from the population                                                                                                                                                                                                                      | e.g. the students in our school                                                                                                                                                                                                                                                                                                |  |  |  |
| 287 | Biased sample                  | A sample that does not<br>properly represent the<br>population                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 288 | Random<br>Sample               | A sample where each member<br>of the population has an equal<br>chance of being selected for<br>the sample                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 289 | Mean                           | Add up the values and divide<br>by how many values there are.                                                                                                                                                                                             | The mean of 3, 4, 7, 6, 0, 4, 6 is $\frac{3+4+7+6+0+4+6}{7} = 5$                                                                                                                                                                                                                                                               |  |  |  |
| 290 | Mean from a<br>Table           | <ol> <li>Find the midpoints (if necessary)</li> <li>Multiply Frequency by values or midpoints</li> <li>Add up these values</li> <li>Divide this total by the Total Frequency</li> <li>If grouped data is used, the answer will be an estimate.</li> </ol> | Height in cm         Frequency         Midpoint $F \times M$ $0 < h \le 10$ 8         5 $8 \times 5 = 40$ $10 < h \le 30$ 10         20 $10 \times 20 = 200$ $30 < h \le 40$ 6         35 $6 \times 35 = 210$ Total         24         Ignore!         450           Estimated Mean         height: $450 \div 24 =$ $18.75$ cm |  |  |  |



|     |                        | MATHS - YEAR 11<br>Higher Tier                                                                                               |                                                                                                                 | RAG |
|-----|------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:            |                                                                                                                              |                                                                                                                 |     |
| 291 | Median Value           | The middle value.                                                                                                            | Find the median of: 4, 5, 2, 3, 6, 7, 6                                                                         |     |
|     |                        | Put the data in order and find the middle one.                                                                               | Ordered: 2, 3, 4, 5, 6, 6, 7                                                                                    |     |
|     |                        | If there are two middle<br>values, find the number half<br>way between them by adding<br>them together and dividing by<br>2. | Median = 5                                                                                                      |     |
| 292 | Median from a<br>Table | Use the formula $\frac{(n+1)}{2}$ to find the position of the median.                                                        | If the total frequency is 15, the<br>median will be the $\left(\frac{15+1}{2}\right) =$<br>8 <i>th</i> position |     |
|     |                        | n is the total frequency.                                                                                                    |                                                                                                                 |     |
| 293 | Mode /Modal            | Most frequent/common.                                                                                                        | Find the mode: 4, 5, 2, 3, 6, 4,                                                                                |     |
|     | Value                  | Can have more than one mode<br>(called bi-modal or multi-<br>modal) or no mode (if all<br>values appear once)                | 7, 8, 4<br>Mode = 4                                                                                             |     |
| 294 | Range                  | Highest value subtract the Smallest value                                                                                    | Find the range: 3, 31, 26, 102, 37, 97.                                                                         |     |
|     |                        | Range is a 'measure of<br>spread'. The smaller the<br>range the more consistent the<br>data.                                 | Range = 102-3 = 99                                                                                              |     |
| 295 | Outlier                | A value that 'lies outside'<br>most of the other values in a<br>set of data.                                                 | 12<br>10 Outlier<br>8<br>6                                                                                      |     |
|     |                        | An outlier is much smaller or<br>much larger than the other<br>values in a set of data.                                      |                                                                                                                 |     |
| 296 | Lower Quartile         | Divides the bottom half of the data into two halves.                                                                         | Find the lower quartile of: 2, 3, 4, 5, 6, 6, 7                                                                 |     |
|     |                        | $LQ = Q_1 = \frac{(n+1)}{4}th \text{ value}$                                                                                 | $Q_1 = \frac{(7+1)}{4} = 2nd \text{ value } \rightarrow 3$                                                      |     |






| MATHS - YEAR 11<br>Higher Tier |                        |                                                                                                                                                                                                               |                                                                          |  |  |
|--------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|
|                                | Whole year:            |                                                                                                                                                                                                               |                                                                          |  |  |
| 297                            | Lower Quartile         | Divides the top half of the data into two halves.                                                                                                                                                             | Find the upper quartile of: 2, 3, 4, 5, 6, 6, 7                          |  |  |
|                                |                        | $UQ = Q_3 = \frac{3(n+1)}{4}th \text{ value}$                                                                                                                                                                 | $Q_3 = \frac{3(7+1)}{4} = 6th \text{ value } \rightarrow 6$              |  |  |
| 298                            | Interquartile<br>Range | The difference between the upper quartile and lower quartile.                                                                                                                                                 | Find the IQR of: 2, 3, 4, 5, 6, 6,<br>7                                  |  |  |
|                                |                        | $IQR = Q_3 - Q_1$                                                                                                                                                                                             | $IQR = Q_3 - Q_1 = 6 - 3 = 3$                                            |  |  |
|                                |                        | The smaller the interquartile range, the more consistent the data.                                                                                                                                            |                                                                          |  |  |
| 299                            | Frequency<br>Table     | A record of how often each<br>value in a set of data occurs.                                                                                                                                                  | Number of marksTally marksFrequency1##1   72##153##1  64##155   3Total26 |  |  |
| 300                            | Bar Chart              | Represents data as vertical<br>blocks.<br>x - axis shows the type of<br>data<br>y - axis shows the frequency<br>for each type of data<br>Each bar should be the same<br>width<br>There should be gaps between | Number of pets owned                                                     |  |  |
|                                |                        | each bar<br>Remember to label each axis.                                                                                                                                                                      |                                                                          |  |  |









|     |                   | MATHS - YEAR 11<br>Higher Tier                                                                                                        |                                                                                                                                                                                                                                                                                                            | RAG |
|-----|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:       |                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |     |
| 304 | Line Graph        | h A graph that uses points<br>connected by straight lines to<br>show how data changes in<br>values.                                   |                                                                                                                                                                                                                                                                                                            |     |
|     |                   | This can be used for time<br>series data, which is a series<br>of data points spaced over<br>uniform time intervals in time<br>order. | 0 1 2 3 4 5 6 7 8 9                                                                                                                                                                                                                                                                                        |     |
| 305 | Two Way<br>Tables | A table that organises data around two categories.                                                                                    | Question: Complete the 2 way table below.           Left Handed         Right Handed         Total           Boys         10         58         58           Girls         0         100         100                                                                                                       |     |
|     |                   | Fill out the information step by step using the information given.                                                                    | Total         84         100           Answer: Step 1, fill out the easy parts (the totals)         Total           Left Handed         Right Handed         Total           Boys         10         48         58           Girls         42         42           Total         16         84         100 |     |
|     |                   | Make sure all the totals add up for all columns and rows.                                                                             | Answer: Step 2, fill out the remaining partsLeft HandedRight HandedTotalBoys104858Girls63642Total1684100                                                                                                                                                                                                   |     |
| 306 | Box Plots         | The minimum, lower quartile,<br>median, upper quartile and<br>maximum are shown on a box<br>plot.                                     |                                                                                                                                                                                                                                                                                                            |     |
|     |                   | A box plot can be drawn<br>independently or from a<br>cumulative frequency<br>diagram.                                                | Minimum L.Q Median U.Q Maximum                                                                                                                                                                                                                                                                             |     |
| 307 | Comparing Box     | Write two sentences.                                                                                                                  | 'On average, students in class A                                                                                                                                                                                                                                                                           |     |
|     | Plots             | 1. Compare the averages using the medians for two sets of data.                                                                       | were more successful on the test<br>than class B because their<br>median score was higher.'                                                                                                                                                                                                                |     |
|     |                   | 2. Compare the spread of the data using the range or IQR for two sets of data.                                                        | 'Students in class B were more<br>consistent than class A in their                                                                                                                                                                                                                                         |     |
|     |                   | The smaller the range/IQR, the more consistent the data.                                                                              | test scores as their IQR was smaller.'                                                                                                                                                                                                                                                                     |     |
|     |                   | You must compare box plots in the context of the problem.                                                                             |                                                                                                                                                                                                                                                                                                            |     |



|     |                         | MATHS - YEAR 11<br>Higher Tier                                                                                                                                                                                                              |                                                                                                                               | RAG |
|-----|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:             |                                                                                                                                                                                                                                             |                                                                                                                               |     |
| 308 |                         | A frequency polygon is plotted<br>against the <b>mid-points</b> of the<br>data groups and is drawn with<br>a ruler.                                                                                                                         | FREQUENCY POLYGON                                                                                                             |     |
| 309 | Cumulative<br>frequency | A cumulative frequency<br>diagram is plotted against the<br>end-points of the data groups<br>and is drawn free-hand with a<br>smooth curve shape.<br>They can be used to find the<br>median (half-way) and<br>quartile (25% and 75%) values | 14<br>19<br>12<br>10<br>8<br>4<br>4<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |     |
| 310 | Histogram               | Histograms are used for<br>representing continuous data<br>with unequal class widths.<br>Bars must not have gaps<br>between them                                                                                                            | LO<br>LO<br>LO<br>LO<br>LO<br>LO<br>LO<br>LO<br>LO<br>LO<br>LO<br>LO<br>LO<br>L                                               |     |
| 311 | Frequency<br>density    | The frequency density can be<br>found using this formula:<br>frequency density = <u>frequency</u><br>class width                                                                                                                            | Freq<br>F.D. Width                                                                                                            |     |
| 312 | Correlation             | Correlation between two sets<br>of data means they are<br>connected in some way.                                                                                                                                                            | There is correlation between<br>temperature and the number of<br>ice creams sold.                                             |     |
| 313 | Causality               | When one variable influences another variable.                                                                                                                                                                                              | The more hours you work at a particular job (paid hourly), the higher your income from that job will be.                      |     |



|     |                         | MATHS - YEAR 11<br>Higher Tier                                                                                                                   |                                                             | RAG |
|-----|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----|
|     | Whole year:             |                                                                                                                                                  |                                                             |     |
| 314 | Scatter Graph           | A graph in which values of two<br>variables are plotted along<br>two axes to compare them<br>and see if there is any<br>connection between them. | Scatterplet ler quelity characteristic XXX.                 |     |
| 315 | Positive<br>Correlation | As one value increases the other value increases.                                                                                                | $ \begin{array}{c}                                     $    |     |
| 316 | Negative<br>Correlation | As one value increases the other value decreases.                                                                                                |                                                             |     |
| 317 | No Correlation          | There is no linear relationship between the two.                                                                                                 | y<br>+ + +<br>+ + + +<br>+ + + +<br>+ + + +<br>+ + + +<br>x |     |
| 318 | Strong<br>Correlation   | When two sets of data are<br>closely linked.<br>The correlation may be<br>positive or negative.                                                  | A stronger negative correlation is shown here.              |     |
| 319 | Weak<br>Correlation     | When two sets of data have<br>correlation, but are not<br>closely linked.<br>The correlation may be<br>positive or negative.                     | A weaker positive correlation is shown here.                |     |



|     |                                             | MATHS - YEAR 11<br>Higher Tier                                                                                                                                                                                                              |                                                                                                                                                       | RAG |
|-----|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:                                 |                                                                                                                                                                                                                                             |                                                                                                                                                       |     |
| 320 | Line of Best Fit<br>(or regression<br>line) | A straight line that best<br>represents the data on a<br>scatter graph.                                                                                                                                                                     | x x x<br>x x x<br>x x x<br>x x<br>x x<br>x x                                                                                                          |     |
| 321 | Outlier                                     | A value that 'lies outside'<br>most of the other values in a<br>set of data.<br>An outlier is much smaller or<br>much larger than the other<br>values in a set of data.                                                                     | 12<br>10<br>8<br>6<br>4<br>2<br>0<br>20<br>40<br>60<br>80<br>100                                                                                      |     |
| 322 | Probability                                 | The likelihood/chance of<br>something happening.<br>Is expressed as a number<br>between 0 (impossible) and 1<br>(certain).<br>Can be expressed as a<br>fraction, decimal, percentage<br>or in words (likely, unlikely,<br>even chance etc.) | Impossible Unlikely Even Chance Likely Certain<br>1-in-6 Chance 4-in-5 Chance                                                                         |     |
| 323 | Probability<br>Notation                     | P(A) refers to the probability that event A will occur.                                                                                                                                                                                     | P(Red Queen) refers to the probability of picking a Red Queen from a pack of cards.                                                                   |     |
|     | Theoretical<br>Probability                  | Number of Favourable Outcomes<br>Total Number of Possible Outcomes                                                                                                                                                                          | Probability of rolling a 4 on a fair<br>6-sided die = $\frac{1}{6}$ .                                                                                 |     |
|     | Relative<br>Frequency                       | Number of Successful Trials<br>Total Number of Trials                                                                                                                                                                                       | A coin is flipped 50 times and<br>lands on Tails 29 times.<br>The relative frequency of getting<br>Tails = $\frac{29}{50}$ .                          |     |
| 326 | Expected<br>Outcomes                        | To find the number of<br>expected outcomes, multiply<br>the probability by the number<br>of trials.                                                                                                                                         | The probability that a football<br>team wins is 0.2 How many<br>games would you expect them to<br>win out of 40?<br>$0.2 \times 40 = 8 \text{ games}$ |     |



|     |                   | MATHS - YEAR 11<br>Higher Tier                                                                                                                                                     |                                         |                                 |                                      |                       |                       |                         |                        |     | RAG |
|-----|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|--------------------------------------|-----------------------|-----------------------|-------------------------|------------------------|-----|-----|
|     | Whole year:       |                                                                                                                                                                                    |                                         |                                 |                                      |                       |                       |                         |                        |     |     |
| 327 |                   | Outcomes are exhaustive if<br>they cover the entire range of<br>possible outcomes.<br>The probabilities of an<br>exhaustive set of outcomes                                        | Whe<br>outc<br>exha<br>all tl           | ome<br>lustiv                   | s 1,<br>ve, t                        | 2, 3<br>beca          | , 4, !<br>use †       | 5 an<br>they            | d 6 a<br>cov           | are |     |
| 328 | Mutually          | adds up to 1.<br>Events are mutually exclusive                                                                                                                                     | Exan                                    | nple                            | s of                                 | muti                  | uallv                 | v exc                   | lusi                   | /e  |     |
|     | Exclusive         | if they cannot happen at the<br>same time.<br>The probabilities of an<br>exhaustive set of mutually<br>exclusive events adds up to 1.                                              | ever<br>- Tui<br>- Hei<br>Exan<br>excli | nts:<br>rning<br>ads a<br>nple: | g left<br>and <sup>-</sup><br>s of 1 | t and<br>Tails<br>non | d rig<br>on a<br>mut  | ht<br>a co <sup>.</sup> | in                     |     |     |
|     |                   |                                                                                                                                                                                    | - Kin<br>card<br>King                   | g an<br>s, be                   | d He<br>ecau                         | earts<br>se yo        | s froi                |                         |                        |     |     |
| 329 | Frequency<br>Tree | A diagram showing how<br>information is categorised into<br>various categories.<br>The numbers at the ends of<br>branches tells us how often<br>something happened<br>(frequency). | $\subset$                               | BOYS<br>Giris                   |                                      | L8 Doe                | Wears g<br>Wears g    | ar glasses              | $\sim$                 |     |     |
|     |                   | The lines connected the numbers are called branches.                                                                                                                               |                                         |                                 |                                      |                       |                       |                         |                        |     |     |
| 330 | Sample Space      | The set of all possible<br>outcomes of an experiment.                                                                                                                              | +<br>1<br>2<br>3<br>4                   | 1<br>2<br>3<br>4<br>5           | 2<br>3<br>4<br>5<br>6                | 3<br>4<br>5<br>6<br>7 | 4<br>5<br>6<br>7<br>8 | 5<br>6<br>7<br>8<br>9   | 6<br>7<br>8<br>9<br>10 |     |     |
|     |                   |                                                                                                                                                                                    | 5<br>6                                  | 6<br>7                          | 7<br>8                               | 8<br>9                | 9<br>10               | 10<br>11                | 11<br>12               |     |     |





|      | MATHS - YEAR 11<br>Higher Tier        |                                                                                |                                                                                                                                                        |  |  |  |
|------|---------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | Whole year:                           |                                                                                |                                                                                                                                                        |  |  |  |
| 331  | Combination                           | A collection of things, where the order does not matter.                       | How many combinations of two<br>ingredients can you make with<br>apple, banana and cherry?                                                             |  |  |  |
|      |                                       |                                                                                | Apple, Banana                                                                                                                                          |  |  |  |
|      |                                       |                                                                                | Apple, Cherry                                                                                                                                          |  |  |  |
|      |                                       |                                                                                | Banana, Cherry                                                                                                                                         |  |  |  |
|      |                                       |                                                                                | 3 combinations                                                                                                                                         |  |  |  |
| 332  | Permutation                           | A collection of things, where the order does matter.                           | You want to visit the homes of<br>three friends, Alex (A), Betty (B)<br>and Chandra (C) but haven't<br>decided the order. What choices<br>do you have? |  |  |  |
|      |                                       |                                                                                | ABC                                                                                                                                                    |  |  |  |
|      |                                       |                                                                                | ACB                                                                                                                                                    |  |  |  |
|      |                                       |                                                                                | BAC                                                                                                                                                    |  |  |  |
|      |                                       |                                                                                | BCA                                                                                                                                                    |  |  |  |
|      |                                       |                                                                                | САВ                                                                                                                                                    |  |  |  |
|      |                                       |                                                                                | СВА                                                                                                                                                    |  |  |  |
| 333. | Permutations<br>with Repetition       | When something has $n$<br>different types, there are $n$<br>choices each time. | How many permutations are<br>there for a three-number<br>combination lock?                                                                             |  |  |  |
|      |                                       | Choosing $r$ of something that has $n$ different types, the permutations are:  | 10 numbers to choose from $\{1, 2, \dots, 10\}$ and we choose 3 of them $\rightarrow$                                                                  |  |  |  |
|      |                                       | $n \times n \times (r \ times) = n^r$                                          | $10 \times 10 \times 10 = 10^3 = 1000$<br>permutations.                                                                                                |  |  |  |
| 334  | Permutations<br>without<br>Repetition | We have to reduce the<br>number of available choices<br>each time.             | How many ways can you order 4 numbered balls?                                                                                                          |  |  |  |
|      |                                       | One you have chosen<br>something, you cannot choose<br>it again.               | $4 \times 3 \times 2 \times 1 = 24$                                                                                                                    |  |  |  |



|      |                       | MATHS - YEAR 11<br>Higher Tier                                                                                                                                                                                                                                  |                                                                                                                                                                           | RAG |
|------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | Whole year:           | 5                                                                                                                                                                                                                                                               |                                                                                                                                                                           |     |
| 335  |                       | If there are $x$ ways of doing<br>something and $y$ ways of doing<br>something else, then there<br>are $xy$ ways of performing<br>both.                                                                                                                         | To choose one of $\{A, B, C\}$ and<br>one of $\{X, Y\}$ means to choose<br>one of $\{AX, AY, BX, BY, CX, CY\}$<br>The rule says that there are 3 ×                        |     |
| 336  | Tree Diagrams         | Tree diagrams show all the<br>possible outcomes of an event<br>and calculate their<br>probabilities.                                                                                                                                                            | $2 = 6 \text{ choices.}$ $Bag A Bag B$ $\frac{1}{3} \text{ red}$ $\frac{1}{5} \text{ red}$                                                                                |     |
|      |                       | All branches must add up to 1<br>when adding downwards.<br>This is because the probability<br>of something not happening is<br>1 minus the probability that it<br>does happen.<br>Multiply going across a tree<br>diagram.<br>Add going down a tree<br>diagram. | 4 $5$ $6$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $3$ $1$ $1$ $3$ $1$ $1$ $3$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ |     |
| 337. | Independent<br>Events | The outcome of a previous<br>event does not<br>influence/affect the outcome<br>of a second event.                                                                                                                                                               | An example of independent<br>events could be replacing a<br>counter in a bag after picking it.                                                                            |     |
| 338  | Dependent<br>Events   | The outcome of a previous<br>event does influence/affect<br>the outcome of a second<br>event.                                                                                                                                                                   | An example of dependent events<br>could be not replacing a counter<br>in a bag after picking it.<br>'Without replacement'                                                 |     |





| MATHS - YEAR 11<br>Higher Tier |                         |                                                                                                                                                                                            |                                                                                                                                                      |  |  |  |  |
|--------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                | Whole year:             |                                                                                                                                                                                            |                                                                                                                                                      |  |  |  |  |
| 339                            | Probability<br>Notation | P(A) refers to the probability that event A will occur.                                                                                                                                    | P(Red Queen) refers to the probability of picking a Red Queen from a pack of cards.                                                                  |  |  |  |  |
|                                |                         | P(A') refers to the probability that event A will not occur.                                                                                                                               | P(Blue') refers to the probability that you do not pick Blue.                                                                                        |  |  |  |  |
|                                |                         | $P(A \cup B)$ refers to the probability that event A or B or both will occur.                                                                                                              | P(Blonde ∪ Right Handed) refers<br>to the probability that you pick<br>someone who is Blonde or Right<br>Handed or both.                             |  |  |  |  |
|                                |                         | $P(A \cap B)$ refers to the probability that both events A and B will occur.                                                                                                               | P(Blonde ∩ Right Handed) refers<br>to the probability that you pick<br>someone who is both Blonde and<br>Right Handed.                               |  |  |  |  |
| 340                            | Venn Diagrams           | A Venn Diagram shows the<br>relationship between a group<br>of different things and how<br>they overlap.<br>You may be asked to shade<br>Venn Diagrams as shown<br>below and to the right. | $A \cup B$ $A \cap B$ $A \cup B'$ |  |  |  |  |





|     |                             | MATHS - YEAR 11<br>Higher Tier                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             | RAG |
|-----|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Whole year:                 |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |     |
| 341 | Venn Diagram<br>Notation    | ∈ means 'element of a set' (a value in the set)                                                                                                                                                                                                                                    | Set A is the even numbers less than 10.                                                                                                                                                                                     |     |
|     |                             | <pre>{ } means the collection of<br/>values in the set.</pre>                                                                                                                                                                                                                      | $A = \{2, 4, 6, 8\}$                                                                                                                                                                                                        |     |
|     |                             | $\xi$ means the 'universal set' (all the values to consider in the question)                                                                                                                                                                                                       | Set B is the prime numbers less<br>than 10.<br>B = {2, 3, 5, 7}                                                                                                                                                             |     |
|     |                             | A' means 'not in set A' (called complement)                                                                                                                                                                                                                                        | A ∪ B = {2, 3, 4, 5, 6, 7, 8}                                                                                                                                                                                               |     |
|     |                             | A ∪ B means 'A or B or both'<br>(called Union)                                                                                                                                                                                                                                     | A ∩ B = {2}                                                                                                                                                                                                                 |     |
|     |                             | $A \cap B$ means 'A and B (called Intersection)                                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |     |
| 342 | AND rule for<br>Probability | When two events, A and B, are independent:                                                                                                                                                                                                                                         | What is the probability of rolling a 4 and flipping a Tails?                                                                                                                                                                |     |
|     |                             | $P(A \text{ and } B) = P(A) \times P(B)$                                                                                                                                                                                                                                           | $P(4 and Tails) = P(4) \times P(Tails)$                                                                                                                                                                                     |     |
|     |                             |                                                                                                                                                                                                                                                                                    | $=\frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$                                                                                                                                                                            |     |
| 343 | OR rule for<br>Probability  | When two events, A and B, are mutually exclusive:                                                                                                                                                                                                                                  | What is the probability of rolling a 2 or rolling a 5?                                                                                                                                                                      |     |
|     |                             | P(A  or  B) = P(A) + P(B)                                                                                                                                                                                                                                                          | P(2  or  5) = P(2) + P(5)                                                                                                                                                                                                   |     |
|     |                             |                                                                                                                                                                                                                                                                                    | $=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}$                                                                                                                                                                          |     |
| 344 | Conditional<br>Probability  | The probability of an event A happening, given that event B has already happened.                                                                                                                                                                                                  | 1st Bead 2nd Bead                                                                                                                                                                                                           |     |
|     |                             | With conditional probability,<br>check if the numbers on the<br>second branches of a tree<br>diagram changes. For<br>example, if you have 4 red<br>beads in a bag of 9 beads and<br>pick a red bead on the first<br>pick, then there will be 3 red<br>beads left out of 8 beads on | $\begin{array}{c c} \frac{4}{9} & \text{Red} & \frac{5}{8} & \text{Green} \\ \hline \frac{5}{9} & \text{Green} & \frac{4}{8} & \text{Red} \\ \hline \frac{4}{8} & \text{Green} & \frac{4}{8} & \text{Green} \\ \end{array}$ |     |
|     |                             | the second pick.                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                             |     |



